Home
Class 12
MATHS
Function f(x) = (sin 2x)^(tan^(2)2x) is...

Function `f(x) = (sin 2x)^(tan^(2)2x)` is not defined at `x=pi/4`. If f(x) is continuous at `x=pi/4`, then `f(pi/4)` is equal to:

A

1

B

2

C

`sqrt(e)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f\left(\frac{\pi}{4}\right) \) for the function \( f(x) = (\sin(2x))^{\tan^2(2x)} \) under the condition that \( f(x) \) is continuous at \( x = \frac{\pi}{4} \). ### Step-by-Step Solution: 1. **Identify the function**: \[ f(x) = (\sin(2x))^{\tan^2(2x)} \] 2. **Check the value at \( x = \frac{\pi}{4} \)**: \[ f\left(\frac{\pi}{4}\right) = (\sin(2 \cdot \frac{\pi}{4}))^{\tan^2(2 \cdot \frac{\pi}{4})} = (\sin(\frac{\pi}{2}))^{\tan^2(\frac{\pi}{2})} \] Here, \( \sin(\frac{\pi}{2}) = 1 \) and \( \tan(\frac{\pi}{2}) \) is undefined. Thus, \( f\left(\frac{\pi}{4}\right) \) is not defined. 3. **Use the continuity condition**: Since \( f(x) \) is continuous at \( x = \frac{\pi}{4} \), we need to find: \[ f\left(\frac{\pi}{4}\right) = \lim_{x \to \frac{\pi}{4}} f(x) = \lim_{x \to \frac{\pi}{4}} (\sin(2x))^{\tan^2(2x)} \] 4. **Rewrite the limit**: We can express the limit in the exponential form: \[ f\left(\frac{\pi}{4}\right) = e^{\lim_{x \to \frac{\pi}{4}} \left(\tan^2(2x) \ln(\sin(2x))\right)} \] 5. **Evaluate the limit**: As \( x \to \frac{\pi}{4} \): - \( \sin(2x) \to 1 \) (since \( \sin(\frac{\pi}{2}) = 1 \)) - \( \tan^2(2x) \to \infty \) (since \( \tan(\frac{\pi}{2}) \) is undefined) This results in an indeterminate form \( \infty \cdot 0 \). We need to manipulate it: \[ \tan^2(2x) = \frac{\sin^2(2x)}{\cos^2(2x)} \] Thus, \[ \tan^2(2x) \ln(\sin(2x)) = \frac{\sin^2(2x) \ln(\sin(2x))}{\cos^2(2x)} \] 6. **Apply L'Hôpital's Rule**: We can apply L'Hôpital's Rule to evaluate the limit: \[ \lim_{x \to \frac{\pi}{4}} \frac{\ln(\sin(2x))}{\cot^2(2x)} \] Differentiate the numerator and denominator: - Derivative of \( \ln(\sin(2x)) = \frac{2\cos(2x)}{\sin(2x)} \) - Derivative of \( \cot^2(2x) = -4\cot(2x)\csc^2(2x) \) So we have: \[ \lim_{x \to \frac{\pi}{4}} \frac{2\cos(2x)}{\sin(2x)} \cdot \frac{1}{-4\cot(2x)\csc^2(2x)} \] 7. **Evaluate the limit**: After simplification, we find that the limit approaches \( -\frac{1}{2} \). 8. **Final calculation**: Thus, \[ f\left(\frac{\pi}{4}\right) = e^{-\frac{1}{2}} = \frac{1}{\sqrt{e}} \] ### Conclusion: The value of \( f\left(\frac{\pi}{4}\right) \) is \( \frac{1}{\sqrt{e}} \).
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS) |2 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

The function f(x)=(sin 2x)^(tan^(2)2x) is not defined at x=(pi)/(4) . The value of f(pi//4) , so that f is continuous at x=pi//4 , is

The function f(x)=(sinx)^(tan^(2)x) is not defined at x=(pi)/(2) . The value of f((pi)/(2)) such that f is continuous at x=(pi)/(2) is

Consider the function f(x)=(sin 2x)^(tan^(2)2x), x in (pi)/(4) . The value of f((pi)/(4)) such that f is continuous at x=(pi)/(4) is

Let f(x) = (1-tanx)/(4x-pi), x != (pi)/4, x in [0,(pi)/2] . If f(x) is continuous in [0,(pi)/2] , then f((pi)/(4)) is

If f(x) = (tan(pi/4-x))/(cot2x), x != pi/4 , is continuous in (0, pi/2) , then f((pi)/(4)) is equal to

The function f(x) = (1-sin x + cos x)/(1+sin x + cosx) is not defined at x = pi . The value of f(pi) , so that f(x) is continuous at x = pi is

Is the function defined by f(x)=x^(2)-sin x+5 continuous at x=pi

If f(x) is continuous at x= pi/4 , where f(x)=(cos x- sin x)/(cos 2x) , for x!= pi/4 , then f(pi/4)=

ML KHANNA-LIMITS, CONTINUITY AND DIFFERENTIABILITY -PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS)
  1. The function f(x) = {{:(x + asqrt(2) sin x, 0 le x lt pi//4),(2x cotx ...

    Text Solution

    |

  2. In order that the function f(x) = (x+1)^(cot x) is continuous at x=0...

    Text Solution

    |

  3. Function f(x) = (sin 2x)^(tan^(2)2x) is not defined at x=pi/4. If f(x...

    Text Solution

    |

  4. Let f(x)=(tan(pi/4-x))/(cot2x),x!=pi/4 . The value which should be ass...

    Text Solution

    |

  5. If f(x) = (2-(256 -7x)^(1//8))/((5x+32)^(1//5)-2), (x ne 2), then for ...

    Text Solution

    |

  6. The value of lambda that makes the function f(x) = {{:((cos x)^(1//sin...

    Text Solution

    |

  7. Let f''(x) be continuous at x = 0 and f''(0)=4, Then value of lim(x t...

    Text Solution

    |

  8. If the function f(x) = {{:((1+ |sin x|^(a/(sin x))), -pi//6 lt x lt 0)...

    Text Solution

    |

  9. Let f(x) = {{:(-2 sin x, x le -pi//2),(a sin x + b, -pi//2 lt x lt pi/...

    Text Solution

    |

  10. The value of f(0) so that the function f(x) = (2x - sin^(-...

    Text Solution

    |

  11. If f(x) = {{:((36^(x) - 9^(x) -4^(x)+1)/(sqrt(2)- sqrt(1+ cos x)), x n...

    Text Solution

    |

  12. Let f(x) ={{:((x-4)/(|x-4|)+a, x lt 4),((x-4)/(|x-40|)+b, x gt 4):}, T...

    Text Solution

    |

  13. If f(x)={1/((pi-2x)^2)dot(logsinx)/((log(1+pi^2-4pix+4x^2)),x!=pi/2k ...

    Text Solution

    |

  14. If f(x) = {{:((sin (a+1) x + sinx)/x, x lt 0),((sqrt(x+bx^(2))- sqrt(x...

    Text Solution

    |

  15. let f(x)=(ae^|sinx|-bcosx-|x|)/(x^2) if f(x) is continuous at x=0 then...

    Text Solution

    |

  16. Let f(x) = {(x^(p) sin 1/x, x ge 0),(0, x =0):} Then f(x) is continuo...

    Text Solution

    |

  17. The value of k which makes f(x) = {{:(sin(1//x), x ne 0),(k, x =0):}, ...

    Text Solution

    |

  18. f(x) = {{:(-1, x lt -1),(-x, -1 le x le 1),(1, x gt 1):} is continous

    Text Solution

    |

  19. If f(x)=int(-1)^(x)|t|dt ,x>=-1 then

    Text Solution

    |

  20. The following functions are continuous on (0, pi)

    Text Solution

    |