Home
Class 12
MATHS
If f(x) = (2-(256 -7x)^(1//8))/((5x+32)^...

If `f(x) = (2-(256 -7x)^(1//8))/((5x+32)^(1//5)-2), (x ne 2)`, then for f to be continuous everywhere, `f(0)` is equal to:

A

`-1`

B

1

C

`2^(6)`

D

`7//64`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f(0) \) such that the function \( f(x) = \frac{2 - (256 - 7x)^{1/8}}{(5x + 32)^{1/5} - 2} \) is continuous everywhere, we need to evaluate the limit of \( f(x) \) as \( x \) approaches 0. ### Step-by-Step Solution: 1. **Set Up the Limit**: We want to find \( f(0) \) such that: \[ f(0) = \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{2 - (256 - 7x)^{1/8}}{(5x + 32)^{1/5} - 2} \] 2. **Substituting \( x = 0 \)**: Substitute \( x = 0 \) into the function: \[ f(0) = \frac{2 - (256 - 7 \cdot 0)^{1/8}}{(5 \cdot 0 + 32)^{1/5} - 2} = \frac{2 - 256^{1/8}}{32^{1/5} - 2} \] Calculate \( 256^{1/8} \) and \( 32^{1/5} \): \[ 256^{1/8} = 2 \quad \text{(since \( 256 = 2^8 \))} \] \[ 32^{1/5} = 2 \quad \text{(since \( 32 = 2^5 \))} \] Thus, \[ f(0) = \frac{2 - 2}{2 - 2} = \frac{0}{0} \] This is an indeterminate form, so we can apply L'Hôpital's Rule. 3. **Applying L'Hôpital's Rule**: Differentiate the numerator and denominator: - **Numerator**: \[ \text{Let } g(x) = 2 - (256 - 7x)^{1/8} \] \[ g'(x) = 0 - \frac{1}{8}(256 - 7x)^{-7/8} \cdot (-7) = \frac{7}{8}(256 - 7x)^{-7/8} \] - **Denominator**: \[ h(x) = (5x + 32)^{1/5} - 2 \] \[ h'(x) = \frac{1}{5}(5x + 32)^{-4/5} \cdot 5 = (5x + 32)^{-4/5} \] 4. **Re-evaluate the Limit**: Now we can evaluate the limit: \[ \lim_{x \to 0} \frac{g'(x)}{h'(x)} = \lim_{x \to 0} \frac{\frac{7}{8}(256 - 7x)^{-7/8}}{(5x + 32)^{-4/5}} \] Substituting \( x = 0 \): \[ = \frac{\frac{7}{8}(256)^{-7/8}}{(32)^{-4/5}} = \frac{\frac{7}{8} \cdot \frac{1}{2^7}}{\frac{1}{2^4}} = \frac{\frac{7}{8} \cdot \frac{1}{128}}{\frac{1}{16}} = \frac{7}{8} \cdot \frac{16}{128} = \frac{7}{64} \] 5. **Conclusion**: Therefore, for \( f \) to be continuous everywhere, we have: \[ f(0) = \frac{7}{64} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS) |2 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(2-(256-7x)^(1//8))/((5x+32)^(1//5)-2) ( x ne 0) , then for f to be continuous on [-1,1] , f(0) is equal to

Thevalueof lim_(x rarr0)(2-(256-7x)^(1/8))/((5x+32)^(1/5)-2) is

The value of f(0) so that the function f(x)=(2-(256-7x)^((1)/(8)))/((5x+32)^(1/5)-2),x!=0 is continuous everywhere,is given by -1( b) 1(c)26 (d) none of these

If f(x)=(3^(x)+3^(-x)-2)/(x^(2)) for x ne 0 is continuous at x = 0, iff f(0) is equal to

If f(x+1)=2x+7 then f(0) is equal to

If f(x)=((256+ax)^((1)/(8))-2)/((32+bx)^((1)/(5))-2) is continuous at x=0 then the value of (a)/(b) is

ML KHANNA-LIMITS, CONTINUITY AND DIFFERENTIABILITY -PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS)
  1. Function f(x) = (sin 2x)^(tan^(2)2x) is not defined at x=pi/4. If f(x...

    Text Solution

    |

  2. Let f(x)=(tan(pi/4-x))/(cot2x),x!=pi/4 . The value which should be ass...

    Text Solution

    |

  3. If f(x) = (2-(256 -7x)^(1//8))/((5x+32)^(1//5)-2), (x ne 2), then for ...

    Text Solution

    |

  4. The value of lambda that makes the function f(x) = {{:((cos x)^(1//sin...

    Text Solution

    |

  5. Let f''(x) be continuous at x = 0 and f''(0)=4, Then value of lim(x t...

    Text Solution

    |

  6. If the function f(x) = {{:((1+ |sin x|^(a/(sin x))), -pi//6 lt x lt 0)...

    Text Solution

    |

  7. Let f(x) = {{:(-2 sin x, x le -pi//2),(a sin x + b, -pi//2 lt x lt pi/...

    Text Solution

    |

  8. The value of f(0) so that the function f(x) = (2x - sin^(-...

    Text Solution

    |

  9. If f(x) = {{:((36^(x) - 9^(x) -4^(x)+1)/(sqrt(2)- sqrt(1+ cos x)), x n...

    Text Solution

    |

  10. Let f(x) ={{:((x-4)/(|x-4|)+a, x lt 4),((x-4)/(|x-40|)+b, x gt 4):}, T...

    Text Solution

    |

  11. If f(x)={1/((pi-2x)^2)dot(logsinx)/((log(1+pi^2-4pix+4x^2)),x!=pi/2k ...

    Text Solution

    |

  12. If f(x) = {{:((sin (a+1) x + sinx)/x, x lt 0),((sqrt(x+bx^(2))- sqrt(x...

    Text Solution

    |

  13. let f(x)=(ae^|sinx|-bcosx-|x|)/(x^2) if f(x) is continuous at x=0 then...

    Text Solution

    |

  14. Let f(x) = {(x^(p) sin 1/x, x ge 0),(0, x =0):} Then f(x) is continuo...

    Text Solution

    |

  15. The value of k which makes f(x) = {{:(sin(1//x), x ne 0),(k, x =0):}, ...

    Text Solution

    |

  16. f(x) = {{:(-1, x lt -1),(-x, -1 le x le 1),(1, x gt 1):} is continous

    Text Solution

    |

  17. If f(x)=int(-1)^(x)|t|dt ,x>=-1 then

    Text Solution

    |

  18. The following functions are continuous on (0, pi)

    Text Solution

    |

  19. Given the function f(x) = 1/(1-x). The points of discontinuity of the ...

    Text Solution

    |

  20. If f(x) is defined by: f(x) = {{:((|x^(2)-x|)/(x^(2)-x), (x ne 0,1)),(...

    Text Solution

    |