Home
Class 12
MATHS
Let f''(x) be continuous at x = 0 and f...

Let `f''(x)` be continuous at x = 0 and `f''(0)=4`, Then value of `lim_(x to 0)(2f(x) -3f(2x) + f(4x))/x^(2)` is:

A

11

B

2

C

12

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit: \[ \lim_{x \to 0} \frac{2f(x) - 3f(2x) + f(4x)}{x^2} \] Given that \(f''(x)\) is continuous at \(x = 0\) and \(f''(0) = 4\), we can use Taylor's expansion for \(f(x)\) around \(x = 0\). ### Step 1: Taylor Expansion The Taylor series expansion of \(f(x)\) around \(x = 0\) is given by: \[ f(x) = f(0) + f'(0)x + \frac{f''(0)}{2}x^2 + o(x^2) \] Using this expansion, we can express \(f(2x)\) and \(f(4x)\): \[ f(2x) = f(0) + f'(0)(2x) + \frac{f''(0)}{2}(2x)^2 + o((2x)^2) = f(0) + 2f'(0)x + 2f''(0)x^2 + o(x^2) \] \[ f(4x) = f(0) + f'(0)(4x) + \frac{f''(0)}{2}(4x)^2 + o((4x)^2) = f(0) + 4f'(0)x + 8f''(0)x^2 + o(x^2) \] ### Step 2: Substitute into the Limit Now substitute \(f(x)\), \(f(2x)\), and \(f(4x)\) into the limit expression: \[ 2f(x) = 2\left(f(0) + f'(0)x + 2x^2 + o(x^2)\right) = 2f(0) + 2f'(0)x + 4x^2 + o(x^2) \] \[ -3f(2x) = -3\left(f(0) + 2f'(0)x + 2x^2 + o(x^2)\right) = -3f(0) - 6f'(0)x - 6x^2 - 3o(x^2) \] \[ f(4x) = f(0) + 4f'(0)x + 8x^2 + o(x^2) \] Now combine these: \[ 2f(x) - 3f(2x) + f(4x) = (2f(0) - 3f(0) + f(0)) + (2f'(0)x - 6f'(0)x + 4f'(0)x) + (4x^2 - 6x^2 + 8x^2) + o(x^2) \] This simplifies to: \[ 0 + 0x + 6x^2 + o(x^2) = 6x^2 + o(x^2) \] ### Step 3: Evaluate the Limit Now substitute this back into the limit: \[ \lim_{x \to 0} \frac{6x^2 + o(x^2)}{x^2} = \lim_{x \to 0} \left(6 + \frac{o(x^2)}{x^2}\right) \] As \(x \to 0\), \(\frac{o(x^2)}{x^2} \to 0\). Therefore, the limit simplifies to: \[ 6 + 0 = 6 \] ### Final Answer Thus, the value of the limit is: \[ \boxed{6} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS) |2 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Let f'(x) be continuous at x=0 and f'(0)=4 then value of lim_(x rarr0)(2f(x)-3f(2x)+f(4x))/(x^(2))

If f'(x)=k,k!=0, then the value of lim_(x rarr0)(2f(x)-3f(2x)+f(4x))/(x^(2)) is

If f(x) is continuous at x=0 and f(0)=2, then lim_(x to 0) int_(0)^(x)f(u)du)to is

Let f(x) be a twice-differentiable function and f'(0)=2. The evaluate: lim_(x rarr0)(2f(x)-3f(2x)+f(4x))/(x^(2))

Let f(x) be twice differentiable function such that f'(0) =2 , then, lim_(xrarr0) (2f(x)-3f(2x)+f(4x))/(x^2) , is

Let f''(x) be continuous at x=0 If lim_(x rarr0)(2f(x)-3a(f(2x)+bf(8x))/(sin^(2)x) exists and f(0)!=0,f'(0)!=0, then the value of (3a)/(b) is

If f(x) is continuous and f(9/2)=2/9 , then : lim_(x to 0) f((1-cos 3x)/(x^2)) =

ML KHANNA-LIMITS, CONTINUITY AND DIFFERENTIABILITY -PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS)
  1. If f(x) = (2-(256 -7x)^(1//8))/((5x+32)^(1//5)-2), (x ne 2), then for ...

    Text Solution

    |

  2. The value of lambda that makes the function f(x) = {{:((cos x)^(1//sin...

    Text Solution

    |

  3. Let f''(x) be continuous at x = 0 and f''(0)=4, Then value of lim(x t...

    Text Solution

    |

  4. If the function f(x) = {{:((1+ |sin x|^(a/(sin x))), -pi//6 lt x lt 0)...

    Text Solution

    |

  5. Let f(x) = {{:(-2 sin x, x le -pi//2),(a sin x + b, -pi//2 lt x lt pi/...

    Text Solution

    |

  6. The value of f(0) so that the function f(x) = (2x - sin^(-...

    Text Solution

    |

  7. If f(x) = {{:((36^(x) - 9^(x) -4^(x)+1)/(sqrt(2)- sqrt(1+ cos x)), x n...

    Text Solution

    |

  8. Let f(x) ={{:((x-4)/(|x-4|)+a, x lt 4),((x-4)/(|x-40|)+b, x gt 4):}, T...

    Text Solution

    |

  9. If f(x)={1/((pi-2x)^2)dot(logsinx)/((log(1+pi^2-4pix+4x^2)),x!=pi/2k ...

    Text Solution

    |

  10. If f(x) = {{:((sin (a+1) x + sinx)/x, x lt 0),((sqrt(x+bx^(2))- sqrt(x...

    Text Solution

    |

  11. let f(x)=(ae^|sinx|-bcosx-|x|)/(x^2) if f(x) is continuous at x=0 then...

    Text Solution

    |

  12. Let f(x) = {(x^(p) sin 1/x, x ge 0),(0, x =0):} Then f(x) is continuo...

    Text Solution

    |

  13. The value of k which makes f(x) = {{:(sin(1//x), x ne 0),(k, x =0):}, ...

    Text Solution

    |

  14. f(x) = {{:(-1, x lt -1),(-x, -1 le x le 1),(1, x gt 1):} is continous

    Text Solution

    |

  15. If f(x)=int(-1)^(x)|t|dt ,x>=-1 then

    Text Solution

    |

  16. The following functions are continuous on (0, pi)

    Text Solution

    |

  17. Given the function f(x) = 1/(1-x). The points of discontinuity of the ...

    Text Solution

    |

  18. If f(x) is defined by: f(x) = {{:((|x^(2)-x|)/(x^(2)-x), (x ne 0,1)),(...

    Text Solution

    |

  19. Let f(x) =|x| + |x-1|, then

    Text Solution

    |

  20. The function f(x)=|x|+|x-1|,is

    Text Solution

    |