Home
Class 12
MATHS
If the function f(x) = {{:((1+ |sin x|^(...

If the function `f(x) = {{:((1+ |sin x|^(a/(sin x))), -pi//6 lt x lt 0),(b, x=0),(e^((tan 2x)/(tan 3x)), 0 lt x lt pi//6):}`, is continous at x=0, then

A

`a = log_(e)b, a =2//3`

B

`b=log_(e)a, a =2//3`

C

`a = log_(e) b, b=2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \( a \) and \( b \) such that the function \[ f(x) = \begin{cases} 1 + | \sin x |^{\frac{a}{\sin x}} & \text{for } -\frac{\pi}{6} < x < 0 \\ b & \text{for } x = 0 \\ e^{\frac{\tan 2x}{\tan 3x}} & \text{for } 0 < x < \frac{\pi}{6} \end{cases} \] is continuous at \( x = 0 \), we need to ensure that the left-hand limit \( f(0^-) \), the value at the point \( f(0) \), and the right-hand limit \( f(0^+) \) are all equal. ### Step 1: Find \( f(0^-) \) We calculate the left-hand limit as \( x \) approaches \( 0 \) from the left: \[ f(0^-) = \lim_{x \to 0^-} \left( 1 + | \sin x |^{\frac{a}{\sin x}} \right) \] As \( x \to 0 \), \( \sin x \to 0 \) and \( | \sin x | \to 0 \). This gives us the indeterminate form \( 1 + 0^{\infty} \). To resolve this, we can rewrite it using the exponential function: \[ f(0^-) = \lim_{x \to 0^-} \left( 1 + e^{\frac{a \ln(|\sin x|)}{\sin x}} \right) \] As \( x \to 0 \), \( \sin x \approx x \), so: \[ \frac{\ln(|\sin x|)}{\sin x} \to -\infty \quad \text{(since } \ln(|\sin x|) \to -\infty \text{)} \] Thus, we have: \[ f(0^-) = e^{a \cdot (-\infty)} = 0 \quad \text{if } a > 0 \] So, \[ f(0^-) = 1 + 0 = 1 \] ### Step 2: Find \( f(0) \) By definition, \[ f(0) = b \] ### Step 3: Find \( f(0^+) \) Now we calculate the right-hand limit as \( x \) approaches \( 0 \) from the right: \[ f(0^+) = \lim_{x \to 0^+} e^{\frac{\tan 2x}{\tan 3x}} \] As \( x \to 0 \), both \( \tan 2x \) and \( \tan 3x \) approach \( 0 \), leading to the indeterminate form \( \frac{0}{0} \). We apply L'Hôpital's Rule: \[ \lim_{x \to 0^+} \frac{\tan 2x}{\tan 3x} = \lim_{x \to 0^+} \frac{2 \sec^2(2x)}{3 \sec^2(3x)} = \frac{2}{3} \] Thus, \[ f(0^+) = e^{\frac{2}{3}} \] ### Step 4: Set the limits equal for continuity For \( f(x) \) to be continuous at \( x = 0 \), we need: \[ f(0^-) = f(0) = f(0^+) \] This gives us: \[ 1 = b = e^{\frac{2}{3}} \] ### Step 5: Solve for \( a \) and \( b \) From \( b = e^{\frac{2}{3}} \), we have: \[ b = e^{\frac{2}{3}} \] And since \( f(0^-) = 1 \): \[ 1 = e^{\frac{a}{\sin x}} \quad \text{as } x \to 0 \] This implies: \[ a = \frac{2}{3} \] ### Conclusion Thus, the values of \( a \) and \( b \) are: \[ a = \frac{2}{3}, \quad b = e^{\frac{2}{3}} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS) |2 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Let f: (-(pi)/(4), (pi)/(4)) rarr R be defined as f(x)= {((1+|sin x|)^((3a)/(|sin x|))",",-(pi)/(4) lt x lt 0),(b",",x=0),(e^(cot 4x//cot 2x)",",0 lt x lt (pi)/(4)):} If f is continuous at x = 0, then the value of 6a+b^(2) is equal to

Let f be defined as f(x)= {((1+|sin x|)^((3a)/(|sin x|))",",-(pi)/(4) lt x lt 0),(b",",x=0),(e^(cot 4x//cot 2x)",",0 lt x lt (pi)/(4)):} If f is continuous at x = 0, then the value of 6a+b^(2) is equal to

Let f(x) = {{:({1 + |sin x|}^(a//|sin x|)",",-pi//6 lt x lt 0),(b",",x = 0),(e^(tan 2x//tan 3x)",",0 lt x lt pi//6):} Determine a and b such that f(x) is continuous at x = 0

Let f(x) = {((1+|sin|)^(a/(|sin x|)),",",-(pi)/6 lt x lt 0),(b, ",",x = 0),(e^((tan 2x)/(tan3x)),",",0 lt x lt pi/6):} Then the value of a and b if f is continuous at x = 0, are respectively

If f(x)={(1+|sinx|)^(a/(|sinx|), -pi/6

Let f(x) = {{:({1+|sin x|}^(a//|sin x|)", " pi/6 lt x lt 0),(" b, " x = 0 ),(e^(tan 2x//tan 3x) ", "0ltx ltpi/6):} Determine a and b such that f(x) is continous at x = 0.

If the function f(x) = {(1+(sin)(pi x)/2,",","for"-oo lt x le 1),(ax+b, ",","for" 1 lt x lt 3),(6(tan)(pi x)/12,",","for"3 le x lt 6):} is continuous in the interval (-oo, 6) , then the value of a and b are respectively

The function f(x) = [{:((6/5)^(tan 6x)/(tan 5x), if, 0 lt x lt pi/2),(b+2, if, x = pi/2),((1+|cos x|)^((a|tan x|)/b),f if, pi/2 lt x lt pi):} Determine the values of 'a' & 'b', if f is continous at x = pi//2 .

The primitive of the function f(x)=(2x+1)|sin x| , when pi lt x lt 2 pi is

ML KHANNA-LIMITS, CONTINUITY AND DIFFERENTIABILITY -PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS)
  1. The value of lambda that makes the function f(x) = {{:((cos x)^(1//sin...

    Text Solution

    |

  2. Let f''(x) be continuous at x = 0 and f''(0)=4, Then value of lim(x t...

    Text Solution

    |

  3. If the function f(x) = {{:((1+ |sin x|^(a/(sin x))), -pi//6 lt x lt 0)...

    Text Solution

    |

  4. Let f(x) = {{:(-2 sin x, x le -pi//2),(a sin x + b, -pi//2 lt x lt pi/...

    Text Solution

    |

  5. The value of f(0) so that the function f(x) = (2x - sin^(-...

    Text Solution

    |

  6. If f(x) = {{:((36^(x) - 9^(x) -4^(x)+1)/(sqrt(2)- sqrt(1+ cos x)), x n...

    Text Solution

    |

  7. Let f(x) ={{:((x-4)/(|x-4|)+a, x lt 4),((x-4)/(|x-40|)+b, x gt 4):}, T...

    Text Solution

    |

  8. If f(x)={1/((pi-2x)^2)dot(logsinx)/((log(1+pi^2-4pix+4x^2)),x!=pi/2k ...

    Text Solution

    |

  9. If f(x) = {{:((sin (a+1) x + sinx)/x, x lt 0),((sqrt(x+bx^(2))- sqrt(x...

    Text Solution

    |

  10. let f(x)=(ae^|sinx|-bcosx-|x|)/(x^2) if f(x) is continuous at x=0 then...

    Text Solution

    |

  11. Let f(x) = {(x^(p) sin 1/x, x ge 0),(0, x =0):} Then f(x) is continuo...

    Text Solution

    |

  12. The value of k which makes f(x) = {{:(sin(1//x), x ne 0),(k, x =0):}, ...

    Text Solution

    |

  13. f(x) = {{:(-1, x lt -1),(-x, -1 le x le 1),(1, x gt 1):} is continous

    Text Solution

    |

  14. If f(x)=int(-1)^(x)|t|dt ,x>=-1 then

    Text Solution

    |

  15. The following functions are continuous on (0, pi)

    Text Solution

    |

  16. Given the function f(x) = 1/(1-x). The points of discontinuity of the ...

    Text Solution

    |

  17. If f(x) is defined by: f(x) = {{:((|x^(2)-x|)/(x^(2)-x), (x ne 0,1)),(...

    Text Solution

    |

  18. Let f(x) =|x| + |x-1|, then

    Text Solution

    |

  19. The function f(x)=|x|+|x-1|,is

    Text Solution

    |

  20. Let f(x) = {{:((x^(4) -5x^(2)+4)/(|(x-1)(x-2)|), (x ne 1,2)),(6, x=1),...

    Text Solution

    |