Home
Class 12
MATHS
Let f(x) = {{:(-2 sin x, x le -pi//2),(a...

Let `f(x) = {{:(-2 sin x, x le -pi//2),(a sin x + b, -pi//2 lt x lt pi//2),(cos x, x ge pi//2):}` If f(x) is continuous everywhere then (a,b) =

A

(0,1)

B

(1,1)

C

(-1,1)

D

(-1,0)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) \) is continuous at the points where the definition of the function changes, specifically at \( x = -\frac{\pi}{2} \) and \( x = \frac{\pi}{2} \). ### Step 1: Continuity at \( x = -\frac{\pi}{2} \) We need to check the continuity of \( f(x) \) at \( x = -\frac{\pi}{2} \). This means we need to ensure that: \[ f\left(-\frac{\pi}{2}\right) = \lim_{x \to -\frac{\pi}{2}^-} f(x) = \lim_{x \to -\frac{\pi}{2}^+} f(x) \] Calculating \( f\left(-\frac{\pi}{2}\right) \): \[ f\left(-\frac{\pi}{2}\right) = -2 \sin\left(-\frac{\pi}{2}\right) = -2 \cdot (-1) = 2 \] Now, calculating the limit from the right: \[ \lim_{x \to -\frac{\pi}{2}^+} f(x) = \lim_{x \to -\frac{\pi}{2}^+} (a \sin x + b) = a \sin\left(-\frac{\pi}{2}\right) + b = -a + b \] Setting these equal for continuity: \[ 2 = -a + b \quad \text{(1)} \] ### Step 2: Continuity at \( x = \frac{\pi}{2} \) Next, we check the continuity of \( f(x) \) at \( x = \frac{\pi}{2} \): \[ f\left(\frac{\pi}{2}\right) = \cos\left(\frac{\pi}{2}\right) = 0 \] Calculating the limit from the left: \[ \lim_{x \to \frac{\pi}{2}^-} f(x) = \lim_{x \to \frac{\pi}{2}^-} (a \sin x + b) = a \sin\left(\frac{\pi}{2}\right) + b = a + b \] Setting these equal for continuity: \[ 0 = a + b \quad \text{(2)} \] ### Step 3: Solving the equations Now we have a system of equations: 1. \( -a + b = 2 \) 2. \( a + b = 0 \) From equation (2), we can express \( b \) in terms of \( a \): \[ b = -a \] Substituting \( b = -a \) into equation (1): \[ -a + (-a) = 2 \implies -2a = 2 \implies a = -1 \] Now substituting \( a = -1 \) back into equation (2): \[ -1 + b = 0 \implies b = 1 \] ### Final Result Thus, the values of \( (a, b) \) are: \[ (a, b) = (-1, 1) \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS) |2 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

The value of a and b such that the function f(x) {:{(-2 sin x", "-pile x le -pi/2 ),(a sin x+b " ," -pi/2 lt x lt pi/2 ),(cos x", " pi/2 le x le pi ):} is continuous in [ - pi , pi ] are

Let f(x) = {(-2sin x, ",","if" x le -(pi)/2),(A sin x + B, ",", "if"-(pi)/2 lt x lt (pi)/2 ),(cos x, ",", "if" x ge (pi)/2 ):} Then

f(x) ={{:(,pi/2+x,x le (-pi)/(4)),(,tan x,(-pi)/(4) lt x lt pi/4),(,pi/2-x,x ge pi/4):} then:

Let f(x) = {{:(-2 sin x,"for",-pi le x le - (pi)/(2)),(a sin x + b,"for",-(pi)/(2) lt x lt (pi)/(2)),(cos x,"for",(pi)/(2) le x le pi):} . If f is continuous on [-pi, pi) , then find the values of a and b.

If f(x) is continuous over [-pi, pi] , where f(x) is defined as f(x) = {(-2sin x, ",",-pi le x le (-pi)/2),(alpha sin x + beta, ",", -(pi)/2 lt x lt (pi)/2 ),(cos x, ",", (pi)/2 le x lt pi ):} then alpha and beta equals

The value of a and b such that the function f(x)={(-2sinx"," , -pi le x le -(pi)/(2)),(a sinx+b",", -(pi)/(2) lt x lt (pi)/(2)),(cosx",", (pi)/(2) le x le pi ):} is continuous in [-pi,pi] are

Find the values of a and b so that the function f(x)={{:(x+asqrt2 sin x", "0 le x le pi//4),(2x cot x + b", "pi//4 le x le pi//2),(a cot 2x - b sin x", "pi//2 lt x le pi):} is continuous for 0 le x le pi .

ML KHANNA-LIMITS, CONTINUITY AND DIFFERENTIABILITY -PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS)
  1. Let f''(x) be continuous at x = 0 and f''(0)=4, Then value of lim(x t...

    Text Solution

    |

  2. If the function f(x) = {{:((1+ |sin x|^(a/(sin x))), -pi//6 lt x lt 0)...

    Text Solution

    |

  3. Let f(x) = {{:(-2 sin x, x le -pi//2),(a sin x + b, -pi//2 lt x lt pi/...

    Text Solution

    |

  4. The value of f(0) so that the function f(x) = (2x - sin^(-...

    Text Solution

    |

  5. If f(x) = {{:((36^(x) - 9^(x) -4^(x)+1)/(sqrt(2)- sqrt(1+ cos x)), x n...

    Text Solution

    |

  6. Let f(x) ={{:((x-4)/(|x-4|)+a, x lt 4),((x-4)/(|x-40|)+b, x gt 4):}, T...

    Text Solution

    |

  7. If f(x)={1/((pi-2x)^2)dot(logsinx)/((log(1+pi^2-4pix+4x^2)),x!=pi/2k ...

    Text Solution

    |

  8. If f(x) = {{:((sin (a+1) x + sinx)/x, x lt 0),((sqrt(x+bx^(2))- sqrt(x...

    Text Solution

    |

  9. let f(x)=(ae^|sinx|-bcosx-|x|)/(x^2) if f(x) is continuous at x=0 then...

    Text Solution

    |

  10. Let f(x) = {(x^(p) sin 1/x, x ge 0),(0, x =0):} Then f(x) is continuo...

    Text Solution

    |

  11. The value of k which makes f(x) = {{:(sin(1//x), x ne 0),(k, x =0):}, ...

    Text Solution

    |

  12. f(x) = {{:(-1, x lt -1),(-x, -1 le x le 1),(1, x gt 1):} is continous

    Text Solution

    |

  13. If f(x)=int(-1)^(x)|t|dt ,x>=-1 then

    Text Solution

    |

  14. The following functions are continuous on (0, pi)

    Text Solution

    |

  15. Given the function f(x) = 1/(1-x). The points of discontinuity of the ...

    Text Solution

    |

  16. If f(x) is defined by: f(x) = {{:((|x^(2)-x|)/(x^(2)-x), (x ne 0,1)),(...

    Text Solution

    |

  17. Let f(x) =|x| + |x-1|, then

    Text Solution

    |

  18. The function f(x)=|x|+|x-1|,is

    Text Solution

    |

  19. Let f(x) = {{:((x^(4) -5x^(2)+4)/(|(x-1)(x-2)|), (x ne 1,2)),(6, x=1),...

    Text Solution

    |

  20. Let f(x) =x-|x-x^(2)|, x in [-1,1].Then the number of points at which ...

    Text Solution

    |