Home
Class 12
MATHS
If f(x) = {{:((36^(x) - 9^(x) -4^(x)+1)/...

If `f(x) = {{:((36^(x) - 9^(x) -4^(x)+1)/(sqrt(2)- sqrt(1+ cos x)), x ne 0),(k, x =0):}`, is continuous at x = 0, then k equals

A

16log2 log 3

B

`16sqrt(2)` log 6

C

`16sqrt(2)` log 2 log 3

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( k \) such that the function \[ f(x) = \frac{36^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}}, \quad x \neq 0 \] is continuous at \( x = 0 \), we need to ensure that \[ f(0) = \lim_{x \to 0} f(x). \] ### Step 1: Calculate \( f(0) \) Since \( f(0) = k \), we have: \[ f(0) = k. \] ### Step 2: Calculate the limit \( \lim_{x \to 0} f(x) \) We need to evaluate the limit: \[ \lim_{x \to 0} \frac{36^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}}. \] ### Step 3: Simplify the numerator Using the exponential property \( a^x = e^{x \ln a} \), we can rewrite the terms in the numerator: \[ 36^x = e^{x \ln 36}, \quad 9^x = e^{x \ln 9}, \quad 4^x = e^{x \ln 4}. \] As \( x \to 0 \), we can use the Taylor expansion: \[ e^{x \ln a} \approx 1 + x \ln a \quad \text{for small } x. \] Thus, we have: \[ 36^x - 9^x - 4^x + 1 \approx (1 + x \ln 36) - (1 + x \ln 9) - (1 + x \ln 4) + 1. \] This simplifies to: \[ x \ln 36 - x \ln 9 - x \ln 4 = x (\ln 36 - \ln 9 - \ln 4). \] ### Step 4: Calculate \( \ln 36 - \ln 9 - \ln 4 \) Using properties of logarithms: \[ \ln 36 = \ln(9 \cdot 4) = \ln 9 + \ln 4. \] Thus, \[ \ln 36 - \ln 9 - \ln 4 = 0. \] This means the numerator approaches \( 0 \) as \( x \to 0 \). ### Step 5: Simplify the denominator For the denominator, we can use the identity \( 1 + \cos x = 2 \cos^2\left(\frac{x}{2}\right) \): \[ \sqrt{1 + \cos x} = \sqrt{2 \cos^2\left(\frac{x}{2}\right)} = \sqrt{2} \cos\left(\frac{x}{2}\right). \] Thus, \[ \sqrt{2} - \sqrt{1 + \cos x} = \sqrt{2} - \sqrt{2} \cos\left(\frac{x}{2}\right) = \sqrt{2}(1 - \cos\left(\frac{x}{2}\right)). \] Using the limit \( 1 - \cos\left(\frac{x}{2}\right) \approx \frac{x^2}{8} \) as \( x \to 0 \): \[ \sqrt{2}(1 - \cos\left(\frac{x}{2}\right)) \approx \sqrt{2} \cdot \frac{x^2}{8} = \frac{\sqrt{2}}{8} x^2. \] ### Step 6: Combine results Now we have: \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{x (\ln 36 - \ln 9 - \ln 4)}{\frac{\sqrt{2}}{8} x^2} = \lim_{x \to 0} \frac{0}{\frac{\sqrt{2}}{8} x^2} = 0. \] ### Step 7: Set the limit equal to \( k \) Since \( \lim_{x \to 0} f(x) = 0 \), we have: \[ k = 0. \] ### Conclusion Thus, the value of \( k \) for which \( f(x) \) is continuous at \( x = 0 \) is: \[ \boxed{0}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS) |2 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:(,(36^(x)-9^(x)-4^(x)+1)/(sqrt2-sqrt(1+cos x)), x ne 0),(,k,x=0):} is continuous at x=0, then k equals

If f(x) = {{:(x cos 1/x, x ne 0),(k ,x =0):} is continous at x=0, then

If f(x) = {{:(sin1/x, x ne 0),(k, x =0):} , is continous at x=0, then k is equal to-

If f(x)={((36^x-9^x-4^x+1)/(sqrt(2)-sqrt(1+cosx)),x!=0),(k ,x=0)) is continuous at x=0, then k equal (A) 16sqrt(2)log2log3 (B) 16sqrt(2)ln6 (C) 16sqrt(2ln2In3 (D) none of these

If f(x)={(x^(k) sin((1)/(x))",",x ne 0),(0",", x =0):} is continuous at x = 0, then

f(x)={(72^(x)-9^(x)-8^(x)+1)/(sqrt(2)-sqrt(1+cos x));x!=0 and k log2log3;x=0 If is continuous functioin at x=0, then k=

If f(x) = {((1-cosx)/x, ",", x != 0),(k, ",", x = 0):} is continuous at x = 0 then k =

If f(x)={((1-cos x)/(x)",",x ne 0),(k",",x=0):} is continuous at x = 0, then the value of k is

ML KHANNA-LIMITS, CONTINUITY AND DIFFERENTIABILITY -PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS)
  1. Let f(x) = {{:(-2 sin x, x le -pi//2),(a sin x + b, -pi//2 lt x lt pi/...

    Text Solution

    |

  2. The value of f(0) so that the function f(x) = (2x - sin^(-...

    Text Solution

    |

  3. If f(x) = {{:((36^(x) - 9^(x) -4^(x)+1)/(sqrt(2)- sqrt(1+ cos x)), x n...

    Text Solution

    |

  4. Let f(x) ={{:((x-4)/(|x-4|)+a, x lt 4),((x-4)/(|x-40|)+b, x gt 4):}, T...

    Text Solution

    |

  5. If f(x)={1/((pi-2x)^2)dot(logsinx)/((log(1+pi^2-4pix+4x^2)),x!=pi/2k ...

    Text Solution

    |

  6. If f(x) = {{:((sin (a+1) x + sinx)/x, x lt 0),((sqrt(x+bx^(2))- sqrt(x...

    Text Solution

    |

  7. let f(x)=(ae^|sinx|-bcosx-|x|)/(x^2) if f(x) is continuous at x=0 then...

    Text Solution

    |

  8. Let f(x) = {(x^(p) sin 1/x, x ge 0),(0, x =0):} Then f(x) is continuo...

    Text Solution

    |

  9. The value of k which makes f(x) = {{:(sin(1//x), x ne 0),(k, x =0):}, ...

    Text Solution

    |

  10. f(x) = {{:(-1, x lt -1),(-x, -1 le x le 1),(1, x gt 1):} is continous

    Text Solution

    |

  11. If f(x)=int(-1)^(x)|t|dt ,x>=-1 then

    Text Solution

    |

  12. The following functions are continuous on (0, pi)

    Text Solution

    |

  13. Given the function f(x) = 1/(1-x). The points of discontinuity of the ...

    Text Solution

    |

  14. If f(x) is defined by: f(x) = {{:((|x^(2)-x|)/(x^(2)-x), (x ne 0,1)),(...

    Text Solution

    |

  15. Let f(x) =|x| + |x-1|, then

    Text Solution

    |

  16. The function f(x)=|x|+|x-1|,is

    Text Solution

    |

  17. Let f(x) = {{:((x^(4) -5x^(2)+4)/(|(x-1)(x-2)|), (x ne 1,2)),(6, x=1),...

    Text Solution

    |

  18. Let f(x) =x-|x-x^(2)|, x in [-1,1].Then the number of points at which ...

    Text Solution

    |

  19. The function f(x) =[x]^(2) -[x^(2)] (where [y] is thegreatest integer ...

    Text Solution

    |

  20. On the interval [-2,2] the function: f(x) = {{:((x+1)e^(-{1/|x|+1/x}...

    Text Solution

    |