Home
Class 12
MATHS
Let f(x) ={{:((x-4)/(|x-4|)+a, x lt 4),(...

Let `f(x) ={{:((x-4)/(|x-4|)+a, x lt 4),((x-4)/(|x-40|)+b, x gt 4):}`, Then `f(x)` is continuous at x = 4, when

A

a=b=0

B

a=b=1

C

a=-1, b=1

D

a=1, b=1

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \( a \) and \( b \) such that the function \[ f(x) = \begin{cases} \frac{x-4}{|x-4|} + a & \text{if } x < 4 \\ \frac{x-4}{|x-4|} + b & \text{if } x > 4 \end{cases} \] is continuous at \( x = 4 \), we need to ensure that the following condition holds: \[ \lim_{x \to 4^-} f(x) = f(4) = \lim_{x \to 4^+} f(x) \] ### Step 1: Calculate \( \lim_{x \to 4^-} f(x) \) For \( x < 4 \), we have: \[ f(x) = \frac{x-4}{|x-4|} + a = \frac{x-4}{-(x-4)} + a = -1 + a \] Thus, \[ \lim_{x \to 4^-} f(x) = -1 + a \] ### Step 2: Calculate \( f(4) \) At \( x = 4 \), the function is not explicitly defined in the piecewise function. However, we can define it as: \[ f(4) = a + b \] ### Step 3: Calculate \( \lim_{x \to 4^+} f(x) \) For \( x > 4 \), we have: \[ f(x) = \frac{x-4}{|x-4|} + b = \frac{x-4}{x-4} + b = 1 + b \] Thus, \[ \lim_{x \to 4^+} f(x) = 1 + b \] ### Step 4: Set the limits equal for continuity Now, we need to set these three expressions equal to each other: 1. From the left limit: \[ -1 + a = f(4) = a + b \] 2. From the right limit: \[ f(4) = a + b = 1 + b \] ### Step 5: Solve the equations From the first equation: \[ -1 + a = a + b \implies -1 = b \quad \text{(Equation 1)} \] From the second equation: \[ a + b = 1 + b \implies a = 1 \quad \text{(Equation 2)} \] ### Step 6: Substitute back to find \( a \) and \( b \) From Equation 2, we have \( a = 1 \). Substituting \( a = 1 \) into Equation 1: \[ -1 = b \implies b = -1 \] ### Conclusion Thus, the values of \( a \) and \( b \) that make \( f(x) \) continuous at \( x = 4 \) are: \[ a = 1, \quad b = -1 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS) |2 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Find the values of a and b sucht that the function f defined by fx = {{:((x-4)/(|x-4|)+a, if x lt 4),(a+b,if x =4),((x-4)/(|x-4|)+b, if x gt 4):} is a continous function at x = 4 .

f(x)={(x-4)/(|x-4|)+a,quad if x<4a+b,quad if x=4(x-4)/(|x-4|)+b,quad if x is continuous at x=4, find a,b .

f(x)= {{:((|x-4|)/(2(x-4)), if x ne 4),(0,if x = 4):} at x = 4 .

f(x)={[4-3x,,x =0] , is continuous at x=0 then a=

If f(x) {:( =(sin 4x)/(5x)+a", if " x gt 0 ),(=x + 4 - b ", if " x le 0 ) :} is continuous at x= 0 , then a+ b - = ……

Let f(x) = {{:(Ax - B,x le 1),(2x^(2) + 3Ax + B,x in (-1, 1]),(4,x gt 1):} Statement I f(x) is continuous at all x if A = (3)/(4), B = - (1)/(4) . Because Statement II Polynomial function is always continuous.

ML KHANNA-LIMITS, CONTINUITY AND DIFFERENTIABILITY -PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS)
  1. The value of f(0) so that the function f(x) = (2x - sin^(-...

    Text Solution

    |

  2. If f(x) = {{:((36^(x) - 9^(x) -4^(x)+1)/(sqrt(2)- sqrt(1+ cos x)), x n...

    Text Solution

    |

  3. Let f(x) ={{:((x-4)/(|x-4|)+a, x lt 4),((x-4)/(|x-40|)+b, x gt 4):}, T...

    Text Solution

    |

  4. If f(x)={1/((pi-2x)^2)dot(logsinx)/((log(1+pi^2-4pix+4x^2)),x!=pi/2k ...

    Text Solution

    |

  5. If f(x) = {{:((sin (a+1) x + sinx)/x, x lt 0),((sqrt(x+bx^(2))- sqrt(x...

    Text Solution

    |

  6. let f(x)=(ae^|sinx|-bcosx-|x|)/(x^2) if f(x) is continuous at x=0 then...

    Text Solution

    |

  7. Let f(x) = {(x^(p) sin 1/x, x ge 0),(0, x =0):} Then f(x) is continuo...

    Text Solution

    |

  8. The value of k which makes f(x) = {{:(sin(1//x), x ne 0),(k, x =0):}, ...

    Text Solution

    |

  9. f(x) = {{:(-1, x lt -1),(-x, -1 le x le 1),(1, x gt 1):} is continous

    Text Solution

    |

  10. If f(x)=int(-1)^(x)|t|dt ,x>=-1 then

    Text Solution

    |

  11. The following functions are continuous on (0, pi)

    Text Solution

    |

  12. Given the function f(x) = 1/(1-x). The points of discontinuity of the ...

    Text Solution

    |

  13. If f(x) is defined by: f(x) = {{:((|x^(2)-x|)/(x^(2)-x), (x ne 0,1)),(...

    Text Solution

    |

  14. Let f(x) =|x| + |x-1|, then

    Text Solution

    |

  15. The function f(x)=|x|+|x-1|,is

    Text Solution

    |

  16. Let f(x) = {{:((x^(4) -5x^(2)+4)/(|(x-1)(x-2)|), (x ne 1,2)),(6, x=1),...

    Text Solution

    |

  17. Let f(x) =x-|x-x^(2)|, x in [-1,1].Then the number of points at which ...

    Text Solution

    |

  18. The function f(x) =[x]^(2) -[x^(2)] (where [y] is thegreatest integer ...

    Text Solution

    |

  19. On the interval [-2,2] the function: f(x) = {{:((x+1)e^(-{1/|x|+1/x}...

    Text Solution

    |

  20. Let f(x) = {{:(int(0)^(x) {5+|1-t|dt}, if x gt 2),(5x+1, if x le 2):},...

    Text Solution

    |