Home
Class 12
MATHS
If f(x) is defined by: f(x) = {{:((|x^(2...

If `f(x)` is defined by: `f(x) = {{:((|x^(2)-x|)/(x^(2)-x), (x ne 0,1)),(1, x=0),(-1, x=1):}` then f(x) is continuous for all

A

x

B

x except at x=0

C

x except at x=1

D

x except at x=0 and x=1

Text Solution

AI Generated Solution

The correct Answer is:
To determine the continuity of the function \( f(x) \) defined as: \[ f(x) = \begin{cases} \frac{|x^2 - x|}{x^2 - x} & \text{if } x \neq 0, 1 \\ 1 & \text{if } x = 0 \\ -1 & \text{if } x = 1 \end{cases} \] we need to check the continuity at the points \( x = 0 \) and \( x = 1 \), as well as for other values of \( x \). ### Step 1: Check continuity at \( x = 0 \) To check continuity at \( x = 0 \), we need to evaluate: 1. \( f(0) \) 2. \( \lim_{x \to 0^-} f(x) \) 3. \( \lim_{x \to 0^+} f(x) \) **Calculating \( f(0) \):** \[ f(0) = 1 \] **Calculating \( \lim_{x \to 0^-} f(x) \):** For \( x < 0 \): \[ f(x) = \frac{|x^2 - x|}{x^2 - x} = \frac{-(x^2 - x)}{x^2 - x} = 1 \] Thus, \[ \lim_{x \to 0^-} f(x) = 1 \] **Calculating \( \lim_{x \to 0^+} f(x) \):** For \( x > 0 \): \[ f(x) = \frac{|x^2 - x|}{x^2 - x} = \frac{x^2 - x}{x^2 - x} = 1 \] Thus, \[ \lim_{x \to 0^+} f(x) = 1 \] **Conclusion for \( x = 0 \):** Since \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = f(0) = 1, \] the function is continuous at \( x = 0 \). ### Step 2: Check continuity at \( x = 1 \) To check continuity at \( x = 1 \), we need to evaluate: 1. \( f(1) \) 2. \( \lim_{x \to 1^-} f(x) \) 3. \( \lim_{x \to 1^+} f(x) \) **Calculating \( f(1) \):** \[ f(1) = -1 \] **Calculating \( \lim_{x \to 1^-} f(x) \):** For \( x < 1 \): \[ f(x) = \frac{|x^2 - x|}{x^2 - x} = \frac{x^2 - x}{x^2 - x} = 1 \] Thus, \[ \lim_{x \to 1^-} f(x) = 1 \] **Calculating \( \lim_{x \to 1^+} f(x) \):** For \( x > 1 \): \[ f(x) = \frac{|x^2 - x|}{x^2 - x} = \frac{x^2 - x}{x^2 - x} = 1 \] Thus, \[ \lim_{x \to 1^+} f(x) = 1 \] **Conclusion for \( x = 1 \):** Since \[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) = 1 \quad \text{and} \quad f(1) = -1, \] the function is not continuous at \( x = 1 \). ### Final Conclusion The function \( f(x) \) is continuous at \( x = 0 \) but not continuous at \( x = 1 \). Therefore, \( f(x) \) is continuous for all \( x \) except at \( x = 1 \).
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS) |2 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

If f(x)= {{:(,(1)/(x)-(2)/(e^(2x)-1),x ne 0),(,1,x=0):}

If f(x)={{:((e^((2)/(x))-1)/(e^((2)/(x))+1),:,x ne 0),(0,:,x=0):} , then f(x) is

If f(x)= {(([x]-1)/(x-1), x ne 1),(0, x=1):} then f(x) is

If f(x) = {{:((sin^(-1)x)^(2)cos((1)/(x))",",x ne 0),(0",",x = 0):} then f(x) is

If f(x) defined by f(x)={(|x^(2)-x|)/(x^(2)-|x|),x!=0,1-1. Then (A)f(x) is continuous for all x (B) for all x except x=0(C) for all x axcept x=1 (D) for all x except x=0 and x=1

If f(x)={:{(xe^(-(1/(|x|) + 1/x)), x ne 0),(0 , x =0 ):} then f(x) is

Let f(x) = {:{ (x sin""(1/x) , x ne 0) , ( k , x = 0):} then f(x) is continuous at x = 0 if

A function f(x) is defined by, f(x) = {{:(([x^(2)]-1)/(x^(2)-1)",","for",x^(2) ne 1),(0",","for",x^(2) = 1):} Discuss the continuity of f(x) at x = 1.

If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is

ML KHANNA-LIMITS, CONTINUITY AND DIFFERENTIABILITY -PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS)
  1. The following functions are continuous on (0, pi)

    Text Solution

    |

  2. Given the function f(x) = 1/(1-x). The points of discontinuity of the ...

    Text Solution

    |

  3. If f(x) is defined by: f(x) = {{:((|x^(2)-x|)/(x^(2)-x), (x ne 0,1)),(...

    Text Solution

    |

  4. Let f(x) =|x| + |x-1|, then

    Text Solution

    |

  5. The function f(x)=|x|+|x-1|,is

    Text Solution

    |

  6. Let f(x) = {{:((x^(4) -5x^(2)+4)/(|(x-1)(x-2)|), (x ne 1,2)),(6, x=1),...

    Text Solution

    |

  7. Let f(x) =x-|x-x^(2)|, x in [-1,1].Then the number of points at which ...

    Text Solution

    |

  8. The function f(x) =[x]^(2) -[x^(2)] (where [y] is thegreatest integer ...

    Text Solution

    |

  9. On the interval [-2,2] the function: f(x) = {{:((x+1)e^(-{1/|x|+1/x}...

    Text Solution

    |

  10. Let f(x) = {{:(int(0)^(x) {5+|1-t|dt}, if x gt 2),(5x+1, if x le 2):},...

    Text Solution

    |

  11. The function f(x) =[x] cos{(2x-1)//2} pi denotes the greatest integer...

    Text Solution

    |

  12. The number of points where f(x) =[sin x + cos x] (where [.] denotes th...

    Text Solution

    |

  13. Let f: R to R be any function. Define g : R to R by g(x) = | f(x)|, A...

    Text Solution

    |

  14. If f(x) ={{:(x(e)^(-[1/|x|+1/x]), x ne 0),(0, x=0):}, then f(x) is:

    Text Solution

    |

  15. The function f defined as - f(x) = (sin x^(2))//x for x ne 0 and f(0) ...

    Text Solution

    |

  16. If f(x) = {{:(1, x lt 0),(1 + sinx, 0 le x lt pi//2):} Then at x=0, t...

    Text Solution

    |

  17. For a real number y, let [y] denotes the greatest integer less than o...

    Text Solution

    |

  18. If f(x) = x [sqrt(x) - sqrt(x+1)], then

    Text Solution

    |

  19. The function f(x) = {{:(|x-3|, x ge 1),(x^(2)//4-3x//2 + 13//4, x lt 1...

    Text Solution

    |

  20. The value of the derivative of |x-1| + |x-3| at x=2 is:

    Text Solution

    |