Home
Class 12
MATHS
Let f(x) = {{:((x^(4) -5x^(2)+4)/(|(x-1)...

Let `f(x) = {{:((x^(4) -5x^(2)+4)/(|(x-1)(x-2)|), (x ne 1,2)),(6, x=1),(12, x=2):}`. Then f(x) is continuous on the set

A

R

B

R-{1}

C

R-{2}

D

R-{1,2}

Text Solution

AI Generated Solution

The correct Answer is:
To determine the continuity of the function \[ f(x) = \begin{cases} \frac{x^4 - 5x^2 + 4}{|(x-1)(x-2)|} & \text{if } x \neq 1, 2 \\ 6 & \text{if } x = 1 \\ 12 & \text{if } x = 2 \end{cases} \] we need to analyze the function at the points \(x = 1\) and \(x = 2\), as these are the points where the function is defined piecewise. ### Step 1: Factor the Polynomial First, we factor the polynomial in the numerator: \[ x^4 - 5x^2 + 4 = (x^2 - 4)(x^2 - 1) = (x-2)(x+2)(x-1)(x+1) \] Thus, we can rewrite \(f(x)\) for \(x \neq 1, 2\) as: \[ f(x) = \frac{(x-2)(x+2)(x-1)(x+1)}{|(x-1)(x-2)|} \] ### Step 2: Simplify the Function For \(x \neq 1, 2\), we can simplify \(f(x)\): \[ f(x) = \frac{(x+2)(x+1)}{|1|} = (x+2)(x+1) \quad \text{for } x > 2 \text{ or } x < 1 \] For \(1 < x < 2\), the expression becomes: \[ f(x) = -(x+2)(x+1) \] ### Step 3: Check Continuity at \(x = 1\) To check continuity at \(x = 1\), we need to find the left-hand limit, right-hand limit, and the function value at \(x = 1\): 1. **Left-hand limit as \(x \to 1^-\)**: \[ \lim_{x \to 1^-} f(x) = -(1+2)(1+1) = -3 \cdot 2 = -6 \] 2. **Right-hand limit as \(x \to 1^+\)**: \[ \lim_{x \to 1^+} f(x) = (1+2)(1+1) = 3 \cdot 2 = 6 \] 3. **Function value at \(x = 1\)**: \[ f(1) = 6 \] Since the left-hand limit \(-6\) is not equal to the right-hand limit \(6\), \(f(x)\) is **not continuous at \(x = 1\)**. ### Step 4: Check Continuity at \(x = 2\) Next, we check continuity at \(x = 2\): 1. **Left-hand limit as \(x \to 2^-\)**: \[ \lim_{x \to 2^-} f(x) = -(2+2)(2+1) = -4 \cdot 3 = -12 \] 2. **Right-hand limit as \(x \to 2^+\)**: \[ \lim_{x \to 2^+} f(x) = (2+2)(2+1) = 4 \cdot 3 = 12 \] 3. **Function value at \(x = 2\)**: \[ f(2) = 12 \] Since the left-hand limit \(-12\) is not equal to the right-hand limit \(12\), \(f(x)\) is **not continuous at \(x = 2\)**. ### Conclusion The function \(f(x)\) is continuous on the set \(\mathbb{R} \setminus \{1, 2\}\).
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS) |2 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Discuss the continuity of f(x)={(x^(4)-5x^(2)+4)/(|(x-1)(x-2)|),x!=1,2,6,x=1,12,x=

L e tf(x)={(x^4-5x^2+4)/(|(x-1)(x-2)6),x!=1,2 12,x=2x=1 then f(x) is continuous on the set R (b) R-[1] (c) R-[2] (d) R-[1,2]

Let f (x = {{: ((x^(2) - 4x + 3)/(x^(2) + 2x - 3), x ne 1),(k, x = 1):} If f (x) is continuous at x= 1, then the value of k will be

If f(x)={{:(,(|x+2|)/(tan^(-1)(x+2)),x ne -2),(,2, x=-2):} , then f(x) is

Let f(x)={x^(2) if 1 4

The value of k for which f(x)={{:(,(x^(2^(32))-2^(32)x+4^(16)-1)/((x-1)^(2)),x ne 1),(,k,x=1):} is continuous at x=1, is

ML KHANNA-LIMITS, CONTINUITY AND DIFFERENTIABILITY -PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS)
  1. Let f(x) =|x| + |x-1|, then

    Text Solution

    |

  2. The function f(x)=|x|+|x-1|,is

    Text Solution

    |

  3. Let f(x) = {{:((x^(4) -5x^(2)+4)/(|(x-1)(x-2)|), (x ne 1,2)),(6, x=1),...

    Text Solution

    |

  4. Let f(x) =x-|x-x^(2)|, x in [-1,1].Then the number of points at which ...

    Text Solution

    |

  5. The function f(x) =[x]^(2) -[x^(2)] (where [y] is thegreatest integer ...

    Text Solution

    |

  6. On the interval [-2,2] the function: f(x) = {{:((x+1)e^(-{1/|x|+1/x}...

    Text Solution

    |

  7. Let f(x) = {{:(int(0)^(x) {5+|1-t|dt}, if x gt 2),(5x+1, if x le 2):},...

    Text Solution

    |

  8. The function f(x) =[x] cos{(2x-1)//2} pi denotes the greatest integer...

    Text Solution

    |

  9. The number of points where f(x) =[sin x + cos x] (where [.] denotes th...

    Text Solution

    |

  10. Let f: R to R be any function. Define g : R to R by g(x) = | f(x)|, A...

    Text Solution

    |

  11. If f(x) ={{:(x(e)^(-[1/|x|+1/x]), x ne 0),(0, x=0):}, then f(x) is:

    Text Solution

    |

  12. The function f defined as - f(x) = (sin x^(2))//x for x ne 0 and f(0) ...

    Text Solution

    |

  13. If f(x) = {{:(1, x lt 0),(1 + sinx, 0 le x lt pi//2):} Then at x=0, t...

    Text Solution

    |

  14. For a real number y, let [y] denotes the greatest integer less than o...

    Text Solution

    |

  15. If f(x) = x [sqrt(x) - sqrt(x+1)], then

    Text Solution

    |

  16. The function f(x) = {{:(|x-3|, x ge 1),(x^(2)//4-3x//2 + 13//4, x lt 1...

    Text Solution

    |

  17. The value of the derivative of |x-1| + |x-3| at x=2 is:

    Text Solution

    |

  18. Let [ ] denote the greatest integer function and f(x) = [tan^(2)x] The...

    Text Solution

    |

  19. If f(x) = {{:((|x+2|)/(tan^(-1)(x+2)), x ne -2),(2, x =-2):},

    Text Solution

    |

  20. If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt...

    Text Solution

    |