Home
Class 12
MATHS
On the interval [-2,2] the function: f...

On the interval [-2,2] the function:
`f(x) = {{:((x+1)e^(-{1/|x|+1/x}), x ne 0),(0, x =0):}`

A

is continuous for all `x in Z`

B

is continuous for all `x in Z- {0}`

C

assumes all intermediate values from f(-2) to f(2)

D

has a maximum value equal to `3/e`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function: \[ f(x) = \begin{cases} (x+1)e^{-\left(\frac{1}{|x|} + \frac{1}{x}\right)}, & x \neq 0 \\ 0, & x = 0 \end{cases} \] We will check the continuity of the function at \(x = 0\) and find its maximum value on the interval \([-2, 2]\). ### Step 1: Check Continuity at \(x = 0\) To determine if \(f(x)\) is continuous at \(x = 0\), we need to check if: \[ \lim_{x \to 0} f(x) = f(0) \] Since \(f(0) = 0\), we need to find \(\lim_{x \to 0} f(x)\). ### Step 2: Calculate \(\lim_{x \to 0^-} f(x)\) For \(x < 0\): \[ f(x) = (x + 1)e^{-\left(\frac{1}{|x|} + \frac{1}{x}\right)} = (x + 1)e^{-\left(-\frac{1}{x} + \frac{1}{x}\right)} = (x + 1)e^{0} = (x + 1) \] Now, we compute the limit: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} (x + 1) = 1 \] ### Step 3: Calculate \(\lim_{x \to 0^+} f(x)\) For \(x > 0\): \[ f(x) = (x + 1)e^{-\left(\frac{1}{x} + \frac{1}{x}\right)} = (x + 1)e^{-2/x} \] As \(x \to 0^+\), \(e^{-2/x} \to 0\): \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (x + 1)e^{-2/x} = 0 \] ### Step 4: Compare Limits Now we compare the two limits: \[ \lim_{x \to 0^-} f(x) = 1 \quad \text{and} \quad \lim_{x \to 0^+} f(x) = 0 \] Since the left-hand limit and right-hand limit are not equal, we conclude that: \[ \lim_{x \to 0} f(x) \neq f(0) \] Thus, \(f(x)\) is not continuous at \(x = 0\). ### Step 5: Analyze Continuity on the Interval \([-2, 2]\) The function is defined for all \(x \in [-2, 2]\) except at \(x = 0\). Therefore, it is continuous on \([-2, 0)\) and \((0, 2]\). ### Step 6: Find Maximum Value on \([-2, 2]\) To find the maximum value of \(f(x)\) on the interval, we will evaluate \(f(x)\) at the endpoints and check for critical points in the intervals. 1. **Evaluate at endpoints:** - \(f(-2) = (-2 + 1)e^{-\left(\frac{1}{2} + \frac{1}{-2}\right)} = -1 \cdot e^{0} = -1\) - \(f(2) = (2 + 1)e^{-\left(\frac{1}{2} + \frac{1}{2}\right)} = 3e^{-1} = \frac{3}{e}\) 2. **Check critical points in \((-2, 0)\) and \((0, 2)\)**: - Since \(f(x)\) is continuous in these intervals, we can use calculus to find critical points by taking the derivative and setting it to zero. However, for simplicity, we can evaluate \(f(x)\) at a few points: - \(f(-1) = 0\) - \(f(1) = 2e^{-2}\) ### Step 7: Compare Values Now we compare the values: - \(f(-2) = -1\) - \(f(-1) = 0\) - \(f(1) = 2e^{-2} \approx 0.27\) - \(f(2) = \frac{3}{e} \approx 1.10\) The maximum value occurs at \(x = 2\): \[ \text{Maximum value} = \frac{3}{e} \] ### Conclusion 1. \(f(x)\) is not continuous at \(x = 0\). 2. The maximum value of \(f(x)\) on the interval \([-2, 2]\) is \(\frac{3}{e}\).
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS) |2 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

On the interval I=[-2,2] , the function f(x)={{:(,(x+1)e^(-((1)/(|x|)+(1)/(x))),x ne 0),(,0,x=0):}

The function f(x)={{:(,(e^(1/x)-1)/(e^(1/x)+1),x ne 0),(,0,x=0):}

If f(x) = {{:((1)/(e^(1//x))",",x ne 0),(0",",x = 0):} then

If f(x)={:{(xe^(-(1/(|x|) + 1/x)), x ne 0),(0 , x =0 ):} then f(x) is

If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):}at x = 0

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):} at x = 0

ML KHANNA-LIMITS, CONTINUITY AND DIFFERENTIABILITY -PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS)
  1. Let f(x) =x-|x-x^(2)|, x in [-1,1].Then the number of points at which ...

    Text Solution

    |

  2. The function f(x) =[x]^(2) -[x^(2)] (where [y] is thegreatest integer ...

    Text Solution

    |

  3. On the interval [-2,2] the function: f(x) = {{:((x+1)e^(-{1/|x|+1/x}...

    Text Solution

    |

  4. Let f(x) = {{:(int(0)^(x) {5+|1-t|dt}, if x gt 2),(5x+1, if x le 2):},...

    Text Solution

    |

  5. The function f(x) =[x] cos{(2x-1)//2} pi denotes the greatest integer...

    Text Solution

    |

  6. The number of points where f(x) =[sin x + cos x] (where [.] denotes th...

    Text Solution

    |

  7. Let f: R to R be any function. Define g : R to R by g(x) = | f(x)|, A...

    Text Solution

    |

  8. If f(x) ={{:(x(e)^(-[1/|x|+1/x]), x ne 0),(0, x=0):}, then f(x) is:

    Text Solution

    |

  9. The function f defined as - f(x) = (sin x^(2))//x for x ne 0 and f(0) ...

    Text Solution

    |

  10. If f(x) = {{:(1, x lt 0),(1 + sinx, 0 le x lt pi//2):} Then at x=0, t...

    Text Solution

    |

  11. For a real number y, let [y] denotes the greatest integer less than o...

    Text Solution

    |

  12. If f(x) = x [sqrt(x) - sqrt(x+1)], then

    Text Solution

    |

  13. The function f(x) = {{:(|x-3|, x ge 1),(x^(2)//4-3x//2 + 13//4, x lt 1...

    Text Solution

    |

  14. The value of the derivative of |x-1| + |x-3| at x=2 is:

    Text Solution

    |

  15. Let [ ] denote the greatest integer function and f(x) = [tan^(2)x] The...

    Text Solution

    |

  16. If f(x) = {{:((|x+2|)/(tan^(-1)(x+2)), x ne -2),(2, x =-2):},

    Text Solution

    |

  17. If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt...

    Text Solution

    |

  18. The set of all points, where the function f(x) =x/(1+|x|) is differen...

    Text Solution

    |

  19. The set of points where the function f(x) = x |x| is differentiable i...

    Text Solution

    |

  20. Prove that the function If f(x)={:{((x)/(1+e^(1//x)) ", " x ne 0),(" ...

    Text Solution

    |