Home
Class 12
MATHS
Let f(x) = {{:(int(0)^(x) {5+|1-t|dt}, i...

Let `f(x) = {{:(int_(0)^(x) {5+|1-t|dt}, if x gt 2),(5x+1, if x le 2):}`, then

A

f(x) is not continuous at x = 2

B

f(x) is continuous but not differentiable at x = 2

C

f(x) is differentiable everywhere

D

the right derivative of `f(x)` at x = 2 does not exist.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) \) defined as follows: \[ f(x) = \begin{cases} \int_{0}^{x} (5 + |1 - t|) dt & \text{if } x > 2 \\ 5x + 1 & \text{if } x \leq 2 \end{cases} \] ### Step 1: Evaluate the integral for \( x > 2 \) We need to evaluate \( \int_{0}^{x} (5 + |1 - t|) dt \). We will break this integral into two parts based on the value of \( t \): 1. For \( t \) in the interval \( [0, 1] \), \( |1 - t| = 1 - t \). 2. For \( t \) in the interval \( [1, x] \) (since \( x > 2 \)), \( |1 - t| = t - 1 \). Thus, we can write: \[ \int_{0}^{x} (5 + |1 - t|) dt = \int_{0}^{1} (5 + (1 - t)) dt + \int_{1}^{x} (5 + (t - 1)) dt \] ### Step 2: Solve the first integral Calculating the first integral: \[ \int_{0}^{1} (5 + (1 - t)) dt = \int_{0}^{1} (6 - t) dt \] Evaluating this integral: \[ = \left[ 6t - \frac{t^2}{2} \right]_{0}^{1} = \left( 6(1) - \frac{1^2}{2} \right) - \left( 6(0) - \frac{0^2}{2} \right) = 6 - \frac{1}{2} = \frac{12}{2} - \frac{1}{2} = \frac{11}{2} \] ### Step 3: Solve the second integral Now, calculating the second integral: \[ \int_{1}^{x} (5 + (t - 1)) dt = \int_{1}^{x} (4 + t) dt \] Evaluating this integral: \[ = \left[ 4t + \frac{t^2}{2} \right]_{1}^{x} = \left( 4x + \frac{x^2}{2} \right) - \left( 4(1) + \frac{1^2}{2} \right) = 4x + \frac{x^2}{2} - (4 + \frac{1}{2}) = 4x + \frac{x^2}{2} - \frac{9}{2} \] ### Step 4: Combine both parts Combining both integrals, we have: \[ f(x) = \frac{11}{2} + \left( 4x + \frac{x^2}{2} - \frac{9}{2} \right) = 4x + \frac{x^2}{2} + 1 \] Thus, for \( x > 2 \): \[ f(x) = 4x + \frac{x^2}{2} + 1 \] ### Step 5: Check continuity at \( x = 2 \) Now we need to check the continuity of \( f(x) \) at \( x = 2 \): 1. Calculate \( f(2) \): \[ f(2) = 5(2) + 1 = 10 + 1 = 11 \] 2. Calculate \( \lim_{x \to 2^-} f(x) \): \[ \lim_{x \to 2^-} f(x) = 5(2) + 1 = 11 \] 3. Calculate \( \lim_{x \to 2^+} f(x) \): \[ \lim_{x \to 2^+} f(x) = 4(2) + \frac{2^2}{2} + 1 = 8 + 2 + 1 = 11 \] Since all three values are equal, \( f(x) \) is continuous at \( x = 2 \). ### Step 6: Check differentiability at \( x = 2 \) 1. Calculate the left-hand derivative: \[ f'(x) = 5 \quad \text{for } x < 2 \] 2. Calculate the right-hand derivative: Using the derivative of \( f(x) = 4x + \frac{x^2}{2} + 1 \): \[ f'(x) = 4 + x \quad \text{for } x > 2 \] At \( x = 2 \): \[ f'(2^+) = 4 + 2 = 6 \] Since the left-hand derivative (5) does not equal the right-hand derivative (6), \( f(x) \) is not differentiable at \( x = 2 \). ### Conclusion Thus, we conclude that \( f(x) \) is continuous at \( x = 2 \) but not differentiable at \( x = 2 \). ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS) |2 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={{:(int_(0)^(x)(5+|1-t|)dt","," if "xgt 2),(5x+1","," if "x le 2):} then the function is

Let f(x) be a function defined as f(x)={{:(,int_(0)^(x)(3+|t-2|),"if "x gt 4),(,2x+8,"if "x le 4):} Then, f(x) is

Let f(x) = int_(-2)^(x)|t + 1|dt , then

Let f(x)={{:(int_(0)^(x)|1-t|dt",",x gt1),(x-(1)/(2)",",xle1):} Then

Let f(x)=int_(0)^(1)|x-t|dt, then

Let F(x)=int_(0)^(x)(t-1)(t-2)^(2)dt

ML KHANNA-LIMITS, CONTINUITY AND DIFFERENTIABILITY -PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS)
  1. The function f(x) =[x]^(2) -[x^(2)] (where [y] is thegreatest integer ...

    Text Solution

    |

  2. On the interval [-2,2] the function: f(x) = {{:((x+1)e^(-{1/|x|+1/x}...

    Text Solution

    |

  3. Let f(x) = {{:(int(0)^(x) {5+|1-t|dt}, if x gt 2),(5x+1, if x le 2):},...

    Text Solution

    |

  4. The function f(x) =[x] cos{(2x-1)//2} pi denotes the greatest integer...

    Text Solution

    |

  5. The number of points where f(x) =[sin x + cos x] (where [.] denotes th...

    Text Solution

    |

  6. Let f: R to R be any function. Define g : R to R by g(x) = | f(x)|, A...

    Text Solution

    |

  7. If f(x) ={{:(x(e)^(-[1/|x|+1/x]), x ne 0),(0, x=0):}, then f(x) is:

    Text Solution

    |

  8. The function f defined as - f(x) = (sin x^(2))//x for x ne 0 and f(0) ...

    Text Solution

    |

  9. If f(x) = {{:(1, x lt 0),(1 + sinx, 0 le x lt pi//2):} Then at x=0, t...

    Text Solution

    |

  10. For a real number y, let [y] denotes the greatest integer less than o...

    Text Solution

    |

  11. If f(x) = x [sqrt(x) - sqrt(x+1)], then

    Text Solution

    |

  12. The function f(x) = {{:(|x-3|, x ge 1),(x^(2)//4-3x//2 + 13//4, x lt 1...

    Text Solution

    |

  13. The value of the derivative of |x-1| + |x-3| at x=2 is:

    Text Solution

    |

  14. Let [ ] denote the greatest integer function and f(x) = [tan^(2)x] The...

    Text Solution

    |

  15. If f(x) = {{:((|x+2|)/(tan^(-1)(x+2)), x ne -2),(2, x =-2):},

    Text Solution

    |

  16. If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt...

    Text Solution

    |

  17. The set of all points, where the function f(x) =x/(1+|x|) is differen...

    Text Solution

    |

  18. The set of points where the function f(x) = x |x| is differentiable i...

    Text Solution

    |

  19. Prove that the function If f(x)={:{((x)/(1+e^(1//x)) ", " x ne 0),(" ...

    Text Solution

    |

  20. The set of allpoints of differentiability of the function f(x) ={{:(x^...

    Text Solution

    |