Home
Class 12
MATHS
The function f(x) =[x] cos{(2x-1)//2} pi...

The function `f(x) =[x] cos{(2x-1)//2} pi` denotes the greatest integer function, is discontinuous at:

A

all x

B

all integer points

C

no x

D

x whixh is not an integer

Text Solution

AI Generated Solution

The correct Answer is:
To determine the points of discontinuity of the function \( f(x) = [x] \cos\left(\frac{2x-1}{2} \pi\right) \), where \([x]\) denotes the greatest integer function, we will analyze the function step by step. ### Step 1: Understand the Function The function \( f(x) \) is defined as the product of the greatest integer function \([x]\) and the cosine function. The greatest integer function \([x]\) gives the largest integer less than or equal to \(x\). ### Step 2: Identify Points of Discontinuity The greatest integer function \([x]\) is discontinuous at integer values of \(x\). Therefore, we will check the points where \(x\) is an integer, specifically \(x = n\) where \(n\) is any integer. ### Step 3: Check Discontinuity at Integer Points Let's check the behavior of \(f(x)\) around an integer point, say \(x = 1\). 1. **Left-hand limit as \(x\) approaches 1**: \[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} [x] \cos\left(\frac{2x-1}{2} \pi\right) \] For \(x\) just less than 1, \([x] = 0\): \[ \lim_{x \to 1^-} f(x) = 0 \cdot \cos\left(\frac{2(1)-1}{2} \pi\right) = 0 \cdot \cos\left(\frac{\pi}{2}\right) = 0 \] 2. **Right-hand limit as \(x\) approaches 1**: \[ \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} [x] \cos\left(\frac{2x-1}{2} \pi\right) \] For \(x\) just greater than 1, \([x] = 1\): \[ \lim_{x \to 1^+} f(x) = 1 \cdot \cos\left(\frac{2(1)-1}{2} \pi\right) = 1 \cdot \cos\left(\frac{\pi}{2}\right) = 1 \cdot 0 = 0 \] 3. **Value of the function at \(x = 1\)**: \[ f(1) = [1] \cos\left(\frac{2(1)-1}{2} \pi\right) = 1 \cdot \cos\left(\frac{\pi}{2}\right) = 1 \cdot 0 = 0 \] ### Step 4: Conclusion Since the left-hand limit, right-hand limit, and the value of the function at \(x = 1\) are all equal to 0, the function \(f(x)\) is continuous at \(x = 1\). ### Step 5: Generalization This reasoning can be applied to any integer \(n\): - For \(x = n\), the function is continuous because the limits from both sides will yield the same result as the function value at that point. ### Final Answer The function \(f(x)\) is continuous for all \(x\) and thus is discontinuous at **no points**.
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS) |2 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

The function f(x)=[x]cos((2x-1)/(2))pi where I l denotes the greatest integer function,is discontinuous

The function f(x)=[x^(2)]+[-x]^(2) , where [.] denotes the greatest integer function, is

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

The function f(x)=[x]+1/2,x!inI is a/an (wher [.] denotes greatest integer function)

Number of points of discontinuity of the function f(x)=[(6x)/(pi)]cos[(3x)/(pi)] where [y] denotes the greatest integer function less than or equal to y) in the interval [0,(pi)/(2)] is

If f:R to R is function defined by f(x) = [x]^3 cos ((2x-1)/2)pi , where [x] denotes the greatest integer function, then f is :

If f: R to R is function defined by f(x) = [x-1] cos ( (2x -1)/(2)) pi , where [.] denotes the greatest integer function , then f is :

ML KHANNA-LIMITS, CONTINUITY AND DIFFERENTIABILITY -PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS)
  1. On the interval [-2,2] the function: f(x) = {{:((x+1)e^(-{1/|x|+1/x}...

    Text Solution

    |

  2. Let f(x) = {{:(int(0)^(x) {5+|1-t|dt}, if x gt 2),(5x+1, if x le 2):},...

    Text Solution

    |

  3. The function f(x) =[x] cos{(2x-1)//2} pi denotes the greatest integer...

    Text Solution

    |

  4. The number of points where f(x) =[sin x + cos x] (where [.] denotes th...

    Text Solution

    |

  5. Let f: R to R be any function. Define g : R to R by g(x) = | f(x)|, A...

    Text Solution

    |

  6. If f(x) ={{:(x(e)^(-[1/|x|+1/x]), x ne 0),(0, x=0):}, then f(x) is:

    Text Solution

    |

  7. The function f defined as - f(x) = (sin x^(2))//x for x ne 0 and f(0) ...

    Text Solution

    |

  8. If f(x) = {{:(1, x lt 0),(1 + sinx, 0 le x lt pi//2):} Then at x=0, t...

    Text Solution

    |

  9. For a real number y, let [y] denotes the greatest integer less than o...

    Text Solution

    |

  10. If f(x) = x [sqrt(x) - sqrt(x+1)], then

    Text Solution

    |

  11. The function f(x) = {{:(|x-3|, x ge 1),(x^(2)//4-3x//2 + 13//4, x lt 1...

    Text Solution

    |

  12. The value of the derivative of |x-1| + |x-3| at x=2 is:

    Text Solution

    |

  13. Let [ ] denote the greatest integer function and f(x) = [tan^(2)x] The...

    Text Solution

    |

  14. If f(x) = {{:((|x+2|)/(tan^(-1)(x+2)), x ne -2),(2, x =-2):},

    Text Solution

    |

  15. If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt...

    Text Solution

    |

  16. The set of all points, where the function f(x) =x/(1+|x|) is differen...

    Text Solution

    |

  17. The set of points where the function f(x) = x |x| is differentiable i...

    Text Solution

    |

  18. Prove that the function If f(x)={:{((x)/(1+e^(1//x)) ", " x ne 0),(" ...

    Text Solution

    |

  19. The set of allpoints of differentiability of the function f(x) ={{:(x^...

    Text Solution

    |

  20. At the point x = 1, the function: f(x) = {{:(x^(3)-1, 1 lt x lt inft...

    Text Solution

    |