Home
Class 12
MATHS
The number of points where f(x) =[sin x ...

The number of points where `f(x) =[sin x + cos x]` (where [.] denotes the greatest integer.function] `x in (0,2pi)` is discontinuous is:

A

3

B

4

C

5

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of points where the function \( f(x) = \lfloor \sin x + \cos x \rfloor \) is discontinuous in the interval \( (0, 2\pi) \), we will follow these steps: ### Step 1: Analyze the function \( \sin x + \cos x \) We start by rewriting \( \sin x + \cos x \) using the sine addition formula. We can express it as: \[ \sin x + \cos x = \sqrt{2} \left( \sin x \cdot \frac{1}{\sqrt{2}} + \cos x \cdot \frac{1}{\sqrt{2}} \right) = \sqrt{2} \sin \left( x + \frac{\pi}{4} \right) \] This transformation helps us understand the behavior of the function. ### Step 2: Determine the range of \( \sin x + \cos x \) The maximum value of \( \sin x + \cos x \) occurs when \( \sin \left( x + \frac{\pi}{4} \right) = 1 \), which gives: \[ \max(\sin x + \cos x) = \sqrt{2} \] The minimum value occurs when \( \sin \left( x + \frac{\pi}{4} \right) = -1 \), giving: \[ \min(\sin x + \cos x) = -\sqrt{2} \] Thus, the range of \( \sin x + \cos x \) is: \[ [-\sqrt{2}, \sqrt{2}] \] ### Step 3: Apply the greatest integer function The greatest integer function \( \lfloor x \rfloor \) is discontinuous at integer values. Therefore, we need to find the integers within the range of \( \sin x + \cos x \). ### Step 4: Identify the integers in the range The approximate values of \( -\sqrt{2} \) and \( \sqrt{2} \) are: \[ -\sqrt{2} \approx -1.414 \quad \text{and} \quad \sqrt{2} \approx 1.414 \] Thus, the integers in the range \( [-\sqrt{2}, \sqrt{2}] \) are \( -1, 0, 1 \). ### Step 5: Find points of discontinuity The function \( f(x) \) will be discontinuous at the points where \( \sin x + \cos x \) crosses these integer values. We need to find the points where: 1. \( \sin x + \cos x = -1 \) 2. \( \sin x + \cos x = 0 \) 3. \( \sin x + \cos x = 1 \) ### Step 6: Solve for each case 1. **For \( \sin x + \cos x = -1 \)**: \[ \sqrt{2} \sin \left( x + \frac{\pi}{4} \right) = -1 \implies \sin \left( x + \frac{\pi}{4} \right) = -\frac{1}{\sqrt{2}} \implies x + \frac{\pi}{4} = \frac{7\pi}{4} \text{ or } \frac{5\pi}{4} \] This gives two solutions in \( (0, 2\pi) \). 2. **For \( \sin x + \cos x = 0 \)**: \[ \sqrt{2} \sin \left( x + \frac{\pi}{4} \right) = 0 \implies \sin \left( x + \frac{\pi}{4} \right) = 0 \implies x + \frac{\pi}{4} = n\pi \] This gives two solutions in \( (0, 2\pi) \). 3. **For \( \sin x + \cos x = 1 \)**: \[ \sqrt{2} \sin \left( x + \frac{\pi}{4} \right) = 1 \implies \sin \left( x + \frac{\pi}{4} \right) = \frac{1}{\sqrt{2}} \implies x + \frac{\pi}{4} = \frac{\pi}{4} \text{ or } \frac{3\pi}{4} \] This gives two solutions in \( (0, 2\pi) \). ### Step 7: Count the points of discontinuity Summing the points from all cases, we find: - From \( \sin x + \cos x = -1 \): 2 points - From \( \sin x + \cos x = 0 \): 2 points - From \( \sin x + \cos x = 1 \): 2 points Thus, the total number of points of discontinuity is: \[ 2 + 2 + 2 = 6 \] ### Final Answer The number of points where \( f(x) = \lfloor \sin x + \cos x \rfloor \) is discontinuous in the interval \( (0, 2\pi) \) is **6**.
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS) |2 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

The number of points where f(x)=[sin x+cos x] (where [.] denotes the greatest integer function x in(0,2 pi) is not continuous is (A) 3(B)4(C)5(D)6

The number of solutions of [sin x]=cos x where [.] denotes the greatest integer function in [0,3 pi], is equal to

If f(x)=[2x], where [.] denotes the greatest integer function,then

Number of solutions of sin x=[x] where [.] denotes the greatest integer function is

The number of solutions of [sin x+ cos x]=3+ [- sin x]+[-cos x] (where [.] denotes the greatest integer function), x in [0, 2pi] , is

The number of solutions of [sin x]+cos x=1 in x in[0,6 pi] where [ ] denotes greatest integer function

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

If f(x)=cos|x|+[|(sin x)/(2)|], ,(where [.] denotes the greatest integer function),then f(x) is

ML KHANNA-LIMITS, CONTINUITY AND DIFFERENTIABILITY -PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS)
  1. Let f(x) = {{:(int(0)^(x) {5+|1-t|dt}, if x gt 2),(5x+1, if x le 2):},...

    Text Solution

    |

  2. The function f(x) =[x] cos{(2x-1)//2} pi denotes the greatest integer...

    Text Solution

    |

  3. The number of points where f(x) =[sin x + cos x] (where [.] denotes th...

    Text Solution

    |

  4. Let f: R to R be any function. Define g : R to R by g(x) = | f(x)|, A...

    Text Solution

    |

  5. If f(x) ={{:(x(e)^(-[1/|x|+1/x]), x ne 0),(0, x=0):}, then f(x) is:

    Text Solution

    |

  6. The function f defined as - f(x) = (sin x^(2))//x for x ne 0 and f(0) ...

    Text Solution

    |

  7. If f(x) = {{:(1, x lt 0),(1 + sinx, 0 le x lt pi//2):} Then at x=0, t...

    Text Solution

    |

  8. For a real number y, let [y] denotes the greatest integer less than o...

    Text Solution

    |

  9. If f(x) = x [sqrt(x) - sqrt(x+1)], then

    Text Solution

    |

  10. The function f(x) = {{:(|x-3|, x ge 1),(x^(2)//4-3x//2 + 13//4, x lt 1...

    Text Solution

    |

  11. The value of the derivative of |x-1| + |x-3| at x=2 is:

    Text Solution

    |

  12. Let [ ] denote the greatest integer function and f(x) = [tan^(2)x] The...

    Text Solution

    |

  13. If f(x) = {{:((|x+2|)/(tan^(-1)(x+2)), x ne -2),(2, x =-2):},

    Text Solution

    |

  14. If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt...

    Text Solution

    |

  15. The set of all points, where the function f(x) =x/(1+|x|) is differen...

    Text Solution

    |

  16. The set of points where the function f(x) = x |x| is differentiable i...

    Text Solution

    |

  17. Prove that the function If f(x)={:{((x)/(1+e^(1//x)) ", " x ne 0),(" ...

    Text Solution

    |

  18. The set of allpoints of differentiability of the function f(x) ={{:(x^...

    Text Solution

    |

  19. At the point x = 1, the function: f(x) = {{:(x^(3)-1, 1 lt x lt inft...

    Text Solution

    |

  20. Let f(x) = "min" {1, x^(2), x^(3)}, then:

    Text Solution

    |