Home
Class 12
MATHS
If f(x) ={{:(x(e)^(-[1/|x|+1/x]), x ne 0...

If `f(x) ={{:(x(e)^(-[1/|x|+1/x]), x ne 0),(0, x=0):}`, then f(x) is:

A

continuous and differentiable `AA` x

B

continuous for `AA` x but not differentiable at x = 0

C

neither differentiable nor continuous at x = 0

D

discontinuous everywhere

Text Solution

AI Generated Solution

The correct Answer is:
To determine the continuity and differentiability of the function \( f(x) \) defined as: \[ f(x) = \begin{cases} x e^{-\left(\frac{1}{|x|} + \frac{1}{x}\right)}, & x \neq 0 \\ 0, & x = 0 \end{cases} \] we will analyze the function at the point \( x = 0 \). ### Step 1: Check Continuity at \( x = 0 \) To check if \( f(x) \) is continuous at \( x = 0 \), we need to verify that: \[ \lim_{x \to 0} f(x) = f(0) \] Since \( f(0) = 0 \), we need to find the left-hand limit and the right-hand limit as \( x \) approaches 0. #### Left-Hand Limit: For \( x < 0 \): \[ f(x) = x e^{-\left(\frac{1}{-x} + \frac{1}{x}\right)} = x e^{-\left(-\frac{1}{x} + \frac{1}{x}\right)} = x e^{0} = x \] Now we calculate the limit: \[ \lim_{h \to 0^-} f(h) = \lim_{h \to 0^-} h = 0 \] #### Right-Hand Limit: For \( x > 0 \): \[ f(x) = x e^{-\left(\frac{1}{x} + \frac{1}{x}\right)} = x e^{-\frac{2}{x}} \] Now we calculate the limit: \[ \lim_{h \to 0^+} f(h) = \lim_{h \to 0^+} h e^{-\frac{2}{h}} \] As \( h \to 0^+ \), \( e^{-\frac{2}{h}} \to 0 \) much faster than \( h \to 0 \), so: \[ \lim_{h \to 0^+} h e^{-\frac{2}{h}} = 0 \] ### Conclusion on Continuity: Since both the left-hand limit and right-hand limit as \( x \to 0 \) are equal to \( 0 \), we have: \[ \lim_{x \to 0} f(x) = 0 = f(0) \] Thus, \( f(x) \) is continuous at \( x = 0 \). ### Step 2: Check Differentiability at \( x = 0 \) To check differentiability at \( x = 0 \), we need to find the left-hand derivative and the right-hand derivative. #### Left-Hand Derivative: The left-hand derivative at \( x = 0 \) is given by: \[ f'_{-}(0) = \lim_{h \to 0^-} \frac{f(h) - f(0)}{h - 0} = \lim_{h \to 0^-} \frac{h - 0}{h} = \lim_{h \to 0^-} 1 = 1 \] #### Right-Hand Derivative: The right-hand derivative at \( x = 0 \) is given by: \[ f'_{+}(0) = \lim_{h \to 0^+} \frac{f(h) - f(0)}{h - 0} = \lim_{h \to 0^+} \frac{h e^{-\frac{2}{h}} - 0}{h} = \lim_{h \to 0^+} e^{-\frac{2}{h}} \] As \( h \to 0^+ \), \( e^{-\frac{2}{h}} \to 0 \), so: \[ f'_{+}(0) = 0 \] ### Conclusion on Differentiability: Since the left-hand derivative \( f'_{-}(0) = 1 \) and the right-hand derivative \( f'_{+}(0) = 0 \) are not equal, \( f(x) \) is not differentiable at \( x = 0 \). ### Final Result: - \( f(x) \) is continuous for all \( x \). - \( f(x) \) is not differentiable at \( x = 0 \).
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS) |2 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

If f(x)={:{(xe^(-(1/(|x|) + 1/x)), x ne 0),(0 , x =0 ):} then f(x) is

If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is

If f(x)={((1)/(1+e^(1//x))"," ,x ne 0),(0",", x =0):} then f(x) is :

If f(x) = {{:((1)/(e^(1//x))",",x ne 0),(0",",x = 0):} then

If f(x)={{:(,(e^(x[x])-1)/(x+[x]),x ne 0),(,1,x=0):} then

If f(x)={{:(,x^(2)sin((1)/(x)),x ne 0),(,0, x=0):} , then

If f(x)= {(([x]-1)/(x-1), x ne 1),(0, x=1):} then f(x) is

ML KHANNA-LIMITS, CONTINUITY AND DIFFERENTIABILITY -PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS)
  1. The number of points where f(x) =[sin x + cos x] (where [.] denotes th...

    Text Solution

    |

  2. Let f: R to R be any function. Define g : R to R by g(x) = | f(x)|, A...

    Text Solution

    |

  3. If f(x) ={{:(x(e)^(-[1/|x|+1/x]), x ne 0),(0, x=0):}, then f(x) is:

    Text Solution

    |

  4. The function f defined as - f(x) = (sin x^(2))//x for x ne 0 and f(0) ...

    Text Solution

    |

  5. If f(x) = {{:(1, x lt 0),(1 + sinx, 0 le x lt pi//2):} Then at x=0, t...

    Text Solution

    |

  6. For a real number y, let [y] denotes the greatest integer less than o...

    Text Solution

    |

  7. If f(x) = x [sqrt(x) - sqrt(x+1)], then

    Text Solution

    |

  8. The function f(x) = {{:(|x-3|, x ge 1),(x^(2)//4-3x//2 + 13//4, x lt 1...

    Text Solution

    |

  9. The value of the derivative of |x-1| + |x-3| at x=2 is:

    Text Solution

    |

  10. Let [ ] denote the greatest integer function and f(x) = [tan^(2)x] The...

    Text Solution

    |

  11. If f(x) = {{:((|x+2|)/(tan^(-1)(x+2)), x ne -2),(2, x =-2):},

    Text Solution

    |

  12. If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt...

    Text Solution

    |

  13. The set of all points, where the function f(x) =x/(1+|x|) is differen...

    Text Solution

    |

  14. The set of points where the function f(x) = x |x| is differentiable i...

    Text Solution

    |

  15. Prove that the function If f(x)={:{((x)/(1+e^(1//x)) ", " x ne 0),(" ...

    Text Solution

    |

  16. The set of allpoints of differentiability of the function f(x) ={{:(x^...

    Text Solution

    |

  17. At the point x = 1, the function: f(x) = {{:(x^(3)-1, 1 lt x lt inft...

    Text Solution

    |

  18. Let f(x) = "min" {1, x^(2), x^(3)}, then:

    Text Solution

    |

  19. The function f(x) is defined as: f(x) =1/3 -x, x ,lt 1/3 =(1/3-x)^...

    Text Solution

    |

  20. If f(x)={{:(,x^(2)sin((1)/(x)),x ne 0),(,0, x=0):}, then

    Text Solution

    |