Home
Class 12
MATHS
If f(x) = {{:(1, x lt 0),(1 + sinx, 0 l...

If `f(x) = {{:(1, x lt 0),(1 + sinx, 0 le x lt pi//2):}` Then at x=0, the derivative `f'(x)` is:

A

1

B

0

C

infinite

D

does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( f'(x) \) at \( x = 0 \) for the piecewise function \[ f(x) = \begin{cases} 1 & \text{if } x < 0 \\ 1 + \sin x & \text{if } 0 \leq x < \frac{\pi}{2} \end{cases} \] we will calculate the left-hand derivative and the right-hand derivative at \( x = 0 \). ### Step 1: Calculate the left-hand derivative at \( x = 0 \) The left-hand derivative is given by the limit: \[ f'_-(0) = \lim_{h \to 0^-} \frac{f(0 + h) - f(0)}{h} \] Since \( h \) approaches \( 0 \) from the left, \( 0 + h < 0 \), thus \( f(0 + h) = f(h) = 1 \). Now, we need to find \( f(0) \): \[ f(0) = 1 + \sin(0) = 1 + 0 = 1 \] Now substituting into the limit: \[ f'_-(0) = \lim_{h \to 0^-} \frac{1 - 1}{h} = \lim_{h \to 0^-} \frac{0}{h} = 0 \] ### Step 2: Calculate the right-hand derivative at \( x = 0 \) The right-hand derivative is given by the limit: \[ f'_+(0) = \lim_{h \to 0^+} \frac{f(0 + h) - f(0)}{h} \] Since \( h \) approaches \( 0 \) from the right, \( 0 + h \geq 0 \), thus \( f(0 + h) = f(h) = 1 + \sin(h) \). Using \( f(0) = 1 \): \[ f'_+(0) = \lim_{h \to 0^+} \frac{(1 + \sin(h)) - 1}{h} = \lim_{h \to 0^+} \frac{\sin(h)}{h} \] We know from the limit property that: \[ \lim_{h \to 0} \frac{\sin(h)}{h} = 1 \] Thus, \[ f'_+(0) = 1 \] ### Step 3: Compare the left-hand and right-hand derivatives We have: \[ f'_-(0) = 0 \quad \text{and} \quad f'_+(0) = 1 \] Since the left-hand derivative does not equal the right-hand derivative: \[ f'_-(0) \neq f'_+(0) \] ### Conclusion The derivative \( f'(0) \) does not exist. ### Final Answer The derivative \( f'(0) \) does not exist. ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS) |2 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:(,1,x lt 0),(,1+sin x,0 le x lt (pi)/(2)):} then derivative of f(x) x=0

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

If f(x) {{:( 1,"for " (-pi)/( 2)lt x lt 0 ),( 1+sin x,"for" 0le xlt (pi)/(2) ):},then at x= 0 ,f'(x) -

If f (x) = {{:( x,"for" 0le xle 1 ),( 2x -1 ,"for " 1 lt x ):} then

If f(x)={:{(x", for " 0 le x lt 1/2),(1-x", for " 1/2 le x lt 1):} , then

Let f(x)={{:(,1+x,"if "x lt 0),(,1+[x]+sin x,0 le x lt pi//2),(,3,x ge pi//2):} Statement-1: F is a continuous on R-[1] Statement-2: The greatest integer function is discontinuous at every integer point.

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

ML KHANNA-LIMITS, CONTINUITY AND DIFFERENTIABILITY -PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS)
  1. If f(x) ={{:(x(e)^(-[1/|x|+1/x]), x ne 0),(0, x=0):}, then f(x) is:

    Text Solution

    |

  2. The function f defined as - f(x) = (sin x^(2))//x for x ne 0 and f(0) ...

    Text Solution

    |

  3. If f(x) = {{:(1, x lt 0),(1 + sinx, 0 le x lt pi//2):} Then at x=0, t...

    Text Solution

    |

  4. For a real number y, let [y] denotes the greatest integer less than o...

    Text Solution

    |

  5. If f(x) = x [sqrt(x) - sqrt(x+1)], then

    Text Solution

    |

  6. The function f(x) = {{:(|x-3|, x ge 1),(x^(2)//4-3x//2 + 13//4, x lt 1...

    Text Solution

    |

  7. The value of the derivative of |x-1| + |x-3| at x=2 is:

    Text Solution

    |

  8. Let [ ] denote the greatest integer function and f(x) = [tan^(2)x] The...

    Text Solution

    |

  9. If f(x) = {{:((|x+2|)/(tan^(-1)(x+2)), x ne -2),(2, x =-2):},

    Text Solution

    |

  10. If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt...

    Text Solution

    |

  11. The set of all points, where the function f(x) =x/(1+|x|) is differen...

    Text Solution

    |

  12. The set of points where the function f(x) = x |x| is differentiable i...

    Text Solution

    |

  13. Prove that the function If f(x)={:{((x)/(1+e^(1//x)) ", " x ne 0),(" ...

    Text Solution

    |

  14. The set of allpoints of differentiability of the function f(x) ={{:(x^...

    Text Solution

    |

  15. At the point x = 1, the function: f(x) = {{:(x^(3)-1, 1 lt x lt inft...

    Text Solution

    |

  16. Let f(x) = "min" {1, x^(2), x^(3)}, then:

    Text Solution

    |

  17. The function f(x) is defined as: f(x) =1/3 -x, x ,lt 1/3 =(1/3-x)^...

    Text Solution

    |

  18. If f(x)={{:(,x^(2)sin((1)/(x)),x ne 0),(,0, x=0):}, then

    Text Solution

    |

  19. Let g(x)=xf(x), where f(x)={{:(x^(2)sin.(1)/(x),":",x ne0),(0,":",x=0)...

    Text Solution

    |

  20. Let f(x)={{:(0,x lt 0),(x^(2),xge0):}, then for all values of x

    Text Solution

    |