Home
Class 12
MATHS
The function f(x) = {{:(|x-3|, x ge 1),(...

The function `f(x) = {{:(|x-3|, x ge 1),(x^(2)//4-3x//2 + 13//4, x lt 1):}` is

A

continous at x=1

B

continous at x=3

C

differentiable at x=1

D

differentiable at x=3

Text Solution

AI Generated Solution

The correct Answer is:
To determine the continuity and differentiability of the function \[ f(x) = \begin{cases} |x - 3| & \text{if } x \geq 1 \\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4} & \text{if } x < 1 \end{cases} \] we will analyze the function at the points \(x = 1\) and \(x = 3\). ### Step 1: Check Continuity at \(x = 1\) 1. **Left-hand limit as \(x\) approaches 1**: \[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1} \left(\frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}\right) \] Substituting \(x = 1\): \[ = \frac{1^2}{4} - \frac{3 \cdot 1}{2} + \frac{13}{4} = \frac{1}{4} - \frac{3}{2} + \frac{13}{4} \] Finding a common denominator (4): \[ = \frac{1 - 6 + 13}{4} = \frac{8}{4} = 2 \] 2. **Right-hand limit as \(x\) approaches 1**: \[ \lim_{x \to 1^+} f(x) = \lim_{x \to 1} |x - 3| = |1 - 3| = 2 \] 3. **Value of the function at \(x = 1\)**: \[ f(1) = |1 - 3| = 2 \] Since the left-hand limit, right-hand limit, and the value of the function at \(x = 1\) are all equal to 2, we conclude that \(f(x)\) is continuous at \(x = 1\). ### Step 2: Check Continuity at \(x = 3\) 1. **Left-hand limit as \(x\) approaches 3**: \[ \lim_{x \to 3^-} f(x) = \lim_{x \to 3} |x - 3| = |3 - 3| = 0 \] 2. **Right-hand limit as \(x\) approaches 3**: \[ \lim_{x \to 3^+} f(x) = \lim_{x \to 3} |x - 3| = |3 - 3| = 0 \] 3. **Value of the function at \(x = 3\)**: \[ f(3) = |3 - 3| = 0 \] Since the left-hand limit, right-hand limit, and the value of the function at \(x = 3\) are all equal to 0, we conclude that \(f(x)\) is continuous at \(x = 3\). ### Step 3: Check Differentiability at \(x = 1\) 1. **Left-hand derivative at \(x = 1\)**: \[ f'(1^-) = \lim_{h \to 0^-} \frac{f(1 + h) - f(1)}{h} = \lim_{h \to 0^-} \frac{\left(\frac{(1 + h)^2}{4} - \frac{3(1 + h)}{2} + \frac{13}{4}\right) - 2}{h} \] Calculating the derivative: \[ = \lim_{h \to 0^-} \frac{\frac{1 + 2h + h^2}{4} - \frac{3 + 3h}{2} + \frac{13}{4} - 2}{h} \] This simplifies to \(-1\). 2. **Right-hand derivative at \(x = 1\)**: \[ f'(1^+) = \lim_{h \to 0^+} \frac{f(1 + h) - f(1)}{h} = \lim_{h \to 0^+} \frac{|1 + h - 3| - 2}{h} = \lim_{h \to 0^+} \frac{-(2 + h)}{h} = -1 \] Since both the left-hand and right-hand derivatives at \(x = 1\) are equal, \(f(x)\) is differentiable at \(x = 1\). ### Step 4: Check Differentiability at \(x = 3\) 1. **Left-hand derivative at \(x = 3\)**: \[ f'(3^-) = \lim_{h \to 0^-} \frac{f(3 + h) - f(3)}{h} = \lim_{h \to 0^-} \frac{|3 + h - 3| - 0}{h} = \lim_{h \to 0^-} \frac{h}{h} = 1 \] 2. **Right-hand derivative at \(x = 3\)**: \[ f'(3^+) = \lim_{h \to 0^+} \frac{f(3 + h) - f(3)}{h} = \lim_{h \to 0^+} \frac{|3 + h - 3| - 0}{h} = \lim_{h \to 0^+} \frac{h}{h} = 1 \] Since the left-hand and right-hand derivatives at \(x = 3\) are not equal (the left-hand derivative is 1 and the right-hand derivative is 1), we conclude that \(f(x)\) is not differentiable at \(x = 3\). ### Conclusion 1. \(f(x)\) is continuous at \(x = 1\). 2. \(f(x)\) is continuous at \(x = 3\). 3. \(f(x)\) is differentiable at \(x = 1\). 4. \(f(x)\) is not differentiable at \(x = 3\).
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS) |2 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

For the function f(x)= {{:(,|x-3|,x ge 1),(,(x^(2))/(4)-(3x)/(2)+(13)/(4),x lt 1):} which one of the folllowing is incorrect

The function {{:(|x-3|,,ifxge1),((x^(2))/(2)-(3x)/(2)+(13)/(4),, if xlt 1):} is

The function f(x)={{:(|x-3|",", x ge1),(((x^(2))/(4))-((3x)/(2))+(13)/(4)",", x lt 1):} is

The function f(x)= {(5x-4 ", " 0 lt x le 1 ),( 4x^3-3x", " 1 lt x lt 2):}

Discuss the continutiy of the function f(x)= {(3x+5", " x ge 2),(6x-1", " x lt 2):}

ML KHANNA-LIMITS, CONTINUITY AND DIFFERENTIABILITY -PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS)
  1. For a real number y, let [y] denotes the greatest integer less than o...

    Text Solution

    |

  2. If f(x) = x [sqrt(x) - sqrt(x+1)], then

    Text Solution

    |

  3. The function f(x) = {{:(|x-3|, x ge 1),(x^(2)//4-3x//2 + 13//4, x lt 1...

    Text Solution

    |

  4. The value of the derivative of |x-1| + |x-3| at x=2 is:

    Text Solution

    |

  5. Let [ ] denote the greatest integer function and f(x) = [tan^(2)x] The...

    Text Solution

    |

  6. If f(x) = {{:((|x+2|)/(tan^(-1)(x+2)), x ne -2),(2, x =-2):},

    Text Solution

    |

  7. If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt...

    Text Solution

    |

  8. The set of all points, where the function f(x) =x/(1+|x|) is differen...

    Text Solution

    |

  9. The set of points where the function f(x) = x |x| is differentiable i...

    Text Solution

    |

  10. Prove that the function If f(x)={:{((x)/(1+e^(1//x)) ", " x ne 0),(" ...

    Text Solution

    |

  11. The set of allpoints of differentiability of the function f(x) ={{:(x^...

    Text Solution

    |

  12. At the point x = 1, the function: f(x) = {{:(x^(3)-1, 1 lt x lt inft...

    Text Solution

    |

  13. Let f(x) = "min" {1, x^(2), x^(3)}, then:

    Text Solution

    |

  14. The function f(x) is defined as: f(x) =1/3 -x, x ,lt 1/3 =(1/3-x)^...

    Text Solution

    |

  15. If f(x)={{:(,x^(2)sin((1)/(x)),x ne 0),(,0, x=0):}, then

    Text Solution

    |

  16. Let g(x)=xf(x), where f(x)={{:(x^(2)sin.(1)/(x),":",x ne0),(0,":",x=0)...

    Text Solution

    |

  17. Let f(x)={{:(0,x lt 0),(x^(2),xge0):}, then for all values of x

    Text Solution

    |

  18. Let [x] denotes the greatest integer less than or equal to x. If f(x) ...

    Text Solution

    |

  19. The function f (x) = 1+ |sin x| is

    Text Solution

    |

  20. If f(x)={{:(,(x log cos x)/(log(1+x^(2))),x ne 0),(,0,x=0):} then

    Text Solution

    |