Home
Class 12
MATHS
Let [ ] denote the greatest integer func...

Let [ ] denote the greatest integer function and `f(x) = [tan^(2)x]` Then

A

`lim_(x to 0) f(x)` does not exist

B

f(x) is continuous at x = 0

C

f(x) is not differentiable at x = 0

D

`f'(0)=1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = \lfloor \tan^2 x \rfloor \) where \( \lfloor \cdot \rfloor \) denotes the greatest integer function. We will focus on the interval \( x = -45^\circ \) to \( x = 45^\circ \). ### Step-by-Step Solution: 1. **Identify the Range of \( \tan^2 x \)**: - The tangent function \( \tan x \) is defined and continuous in the interval \( (-45^\circ, 45^\circ) \). - At the endpoints, we have: - \( \tan(-45^\circ) = -1 \) - \( \tan(45^\circ) = 1 \) - Therefore, \( -1 < \tan x < 1 \) for \( -45^\circ < x < 45^\circ \). 2. **Square the Tangent Function**: - Squaring the tangent function gives: \[ 0 < \tan^2 x < 1 \] - This means that \( \tan^2 x \) takes values between 0 and 1. 3. **Apply the Greatest Integer Function**: - Since \( 0 < \tan^2 x < 1 \), applying the greatest integer function gives: \[ f(x) = \lfloor \tan^2 x \rfloor = 0 \] - This holds true for all \( x \) in the interval \( (-45^\circ, 45^\circ) \). 4. **Check Continuity**: - The function \( f(x) = 0 \) is a constant function in the interval \( (-45^\circ, 45^\circ) \). - A constant function is continuous everywhere, hence \( f(x) \) is continuous in this interval. 5. **Check Differentiability**: - The derivative of a constant function is zero. Therefore, \( f'(x) = 0 \) for all \( x \) in the interval. - However, at points where \( \tan^2 x \) approaches 1 (specifically at \( x = 45^\circ \) or \( x = -45^\circ \)), the function is not defined due to the discontinuity of \( \tan x \) at these points. 6. **Conclusion**: - The function \( f(x) \) is continuous and differentiable for all \( x \) in the interval \( (-45^\circ, 45^\circ) \) except at the endpoints where \( \tan x \) is undefined. ### Final Answer: - The function \( f(x) = \lfloor \tan^2 x \rfloor \) is continuous and differentiable in the interval \( (-45^\circ, 45^\circ) \) except at the endpoints.
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS) |2 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Let [.] represent the greatest integer function and f(x)=[tan^(2)x] then :

The range of the function f(x) =[sinx+cosx] (where [x] denotes the greatest integer function) is f(x) in :

Let f(x)={(x(e^([x]+x)-4)/([x]+|x|), , x!=0),(3, , x=0):} Where [ ] denotes the greatest integer function. Then,

Find the period (if periodic) of the following function ([.] denotes the greatest integer functions): f(x)=tanpi/2[x]

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

Let f:R rarr A defined by f(x)=[x-2]+[4-x], (where [] denotes the greatest integer function).Then

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

Let f(x) = (sin (pi [ x + pi]))/(1+[x]^(2)) where [] denotes the greatest integer function then f(x) is

Let f(x) = (sin (pi [ x - pi]))/(1+[x^2]) where [] denotes the greatest integer function then f(x) is

ML KHANNA-LIMITS, CONTINUITY AND DIFFERENTIABILITY -PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS)
  1. The function f(x) = {{:(|x-3|, x ge 1),(x^(2)//4-3x//2 + 13//4, x lt 1...

    Text Solution

    |

  2. The value of the derivative of |x-1| + |x-3| at x=2 is:

    Text Solution

    |

  3. Let [ ] denote the greatest integer function and f(x) = [tan^(2)x] The...

    Text Solution

    |

  4. If f(x) = {{:((|x+2|)/(tan^(-1)(x+2)), x ne -2),(2, x =-2):},

    Text Solution

    |

  5. If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt...

    Text Solution

    |

  6. The set of all points, where the function f(x) =x/(1+|x|) is differen...

    Text Solution

    |

  7. The set of points where the function f(x) = x |x| is differentiable i...

    Text Solution

    |

  8. Prove that the function If f(x)={:{((x)/(1+e^(1//x)) ", " x ne 0),(" ...

    Text Solution

    |

  9. The set of allpoints of differentiability of the function f(x) ={{:(x^...

    Text Solution

    |

  10. At the point x = 1, the function: f(x) = {{:(x^(3)-1, 1 lt x lt inft...

    Text Solution

    |

  11. Let f(x) = "min" {1, x^(2), x^(3)}, then:

    Text Solution

    |

  12. The function f(x) is defined as: f(x) =1/3 -x, x ,lt 1/3 =(1/3-x)^...

    Text Solution

    |

  13. If f(x)={{:(,x^(2)sin((1)/(x)),x ne 0),(,0, x=0):}, then

    Text Solution

    |

  14. Let g(x)=xf(x), where f(x)={{:(x^(2)sin.(1)/(x),":",x ne0),(0,":",x=0)...

    Text Solution

    |

  15. Let f(x)={{:(0,x lt 0),(x^(2),xge0):}, then for all values of x

    Text Solution

    |

  16. Let [x] denotes the greatest integer less than or equal to x. If f(x) ...

    Text Solution

    |

  17. The function f (x) = 1+ |sin x| is

    Text Solution

    |

  18. If f(x)={{:(,(x log cos x)/(log(1+x^(2))),x ne 0),(,0,x=0):} then

    Text Solution

    |

  19. If x+4|y| = 6y then y as a function of x is

    Text Solution

    |

  20. If f'(x(0)) exists, then lim(h to 0)([f(x(0) +h) -f(x(0) -h))/(2h)) is...

    Text Solution

    |