Home
Class 12
MATHS
The function f(x) is defined as: f(x) ...

The function f(x) is defined as:
`f(x) =1/3 -x, x ,lt 1/3`
`=(1/3-x)^(2), x ge 1/3`
then in.the itnerval (0,1), the mean value, theorem is not true because

A

f(x) is not continuous

B

f(x) is not differentiable

C

`f(0) ne f(1)`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To determine why the Mean Value Theorem (MVT) is not applicable for the given function \( f(x) \) in the interval \( (0, 1) \), we need to check two main conditions: continuity and differentiability of the function on the specified interval. ### Step 1: Define the function The function \( f(x) \) is given as: \[ f(x) = \begin{cases} \frac{1}{3} - x & \text{if } x < \frac{1}{3} \\ \left(\frac{1}{3} - x\right)^2 & \text{if } x \geq \frac{1}{3} \end{cases} \] ### Step 2: Check continuity To check continuity at \( x = \frac{1}{3} \), we need to ensure that the left-hand limit and right-hand limit at this point are equal to the function value at \( x = \frac{1}{3} \). 1. **Left-hand limit** as \( x \) approaches \( \frac{1}{3} \): \[ \lim_{x \to \frac{1}{3}^-} f(x) = \frac{1}{3} - \frac{1}{3} = 0 \] 2. **Right-hand limit** as \( x \) approaches \( \frac{1}{3} \): \[ \lim_{x \to \frac{1}{3}^+} f(x) = \left(\frac{1}{3} - \frac{1}{3}\right)^2 = 0 \] 3. **Function value** at \( x = \frac{1}{3} \): \[ f\left(\frac{1}{3}\right) = \left(\frac{1}{3} - \frac{1}{3}\right)^2 = 0 \] Since the left-hand limit, right-hand limit, and the function value at \( x = \frac{1}{3} \) are all equal to 0, \( f(x) \) is continuous at \( x = \frac{1}{3} \). ### Step 3: Check differentiability Next, we need to check if \( f(x) \) is differentiable at \( x = \frac{1}{3} \). 1. **Left-hand derivative**: \[ f'(x) = \frac{d}{dx}\left(\frac{1}{3} - x\right) = -1 \quad \text{for } x < \frac{1}{3} \] Thus, \[ \lim_{h \to 0^-} \frac{f\left(\frac{1}{3} + h\right) - f\left(\frac{1}{3}\right)}{h} = -1 \] 2. **Right-hand derivative**: \[ f'(x) = \frac{d}{dx}\left(\left(\frac{1}{3} - x\right)^2\right) = -2\left(\frac{1}{3} - x\right) \quad \text{for } x > \frac{1}{3} \] Thus, \[ \lim_{h \to 0^+} \frac{f\left(\frac{1}{3} + h\right) - f\left(\frac{1}{3}\right)}{h} = -2\left(\frac{1}{3} - \frac{1}{3}\right) = 0 \] Since the left-hand derivative (-1) does not equal the right-hand derivative (0), \( f(x) \) is not differentiable at \( x = \frac{1}{3} \). ### Conclusion The Mean Value Theorem requires that the function be continuous on the closed interval and differentiable on the open interval. Although \( f(x) \) is continuous on \( [0, 1] \), it is not differentiable at \( x = \frac{1}{3} \). Therefore, the Mean Value Theorem does not hold for \( f(x) \) in the interval \( (0, 1) \). ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS) |2 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

A function is defined as follows f(x)={:{(x^(3),, x^(2)lt1),(x, , x^(2)ge 1):} then function is

Let the function f be defined by f(x)=((2x+1)/(1-3x)) then f^(-1)(x) is

A function is defined as follows f(x)={x^(3),x^(2)<1 and x,x^(2)<=1 then function is

The function f: [0,3] to [1,29], defined by f(x)=2x^(3)-15x^(2)+36x +1, is

If the function, f:[1,oo]to [1,oo] is defined by f(x)=3^(x(x-1)) , then f^(-1)(x) is

Let f(x)={{:(x^(3)-1",", x lt2),(x^(2)+3"," , x ge 2):} Then

For f(x) = (x - 1)^(2/3) , the mean value theorem is applicable to f(x) in the interval

ML KHANNA-LIMITS, CONTINUITY AND DIFFERENTIABILITY -PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS)
  1. At the point x = 1, the function: f(x) = {{:(x^(3)-1, 1 lt x lt inft...

    Text Solution

    |

  2. Let f(x) = "min" {1, x^(2), x^(3)}, then:

    Text Solution

    |

  3. The function f(x) is defined as: f(x) =1/3 -x, x ,lt 1/3 =(1/3-x)^...

    Text Solution

    |

  4. If f(x)={{:(,x^(2)sin((1)/(x)),x ne 0),(,0, x=0):}, then

    Text Solution

    |

  5. Let g(x)=xf(x), where f(x)={{:(x^(2)sin.(1)/(x),":",x ne0),(0,":",x=0)...

    Text Solution

    |

  6. Let f(x)={{:(0,x lt 0),(x^(2),xge0):}, then for all values of x

    Text Solution

    |

  7. Let [x] denotes the greatest integer less than or equal to x. If f(x) ...

    Text Solution

    |

  8. The function f (x) = 1+ |sin x| is

    Text Solution

    |

  9. If f(x)={{:(,(x log cos x)/(log(1+x^(2))),x ne 0),(,0,x=0):} then

    Text Solution

    |

  10. If x+4|y| = 6y then y as a function of x is

    Text Solution

    |

  11. If f'(x(0)) exists, then lim(h to 0)([f(x(0) +h) -f(x(0) -h))/(2h)) is...

    Text Solution

    |

  12. The function f(x) = {{:(|2x-3|[x], x ge 1),(sin((pix)/2), x lt 1):}

    Text Solution

    |

  13. The function f (x) is defined as under : f(x)={{:(3^(x), -1 le x le...

    Text Solution

    |

  14. A function is defined as follows : f(x) = {{:(x^(3), x^(2) lt 1),(x,...

    Text Solution

    |

  15. The left-hand derivative of f(x) =[x]sin (pix) at k an interger, is:

    Text Solution

    |

  16. If the derivative of the function f(x)={{:(ax^(2)+b,xlt-1),(bx^(2)+a...

    Text Solution

    |

  17. If f(x) = {{:(ax^(2) + b, b ne 0, x le 1),(bx^(2) + ax + c,, x gt 1):}...

    Text Solution

    |

  18. Let f(x) = a|x|^(2) + b|x| +c where a,b,c are real constants. Then f'(...

    Text Solution

    |

  19. Let h(x) = "min" {x,x^(2)} , for every real number of x. Then

    Text Solution

    |

  20. Let f : R to R be a function defined by f(x) = max. {x, x^(3)}. The s...

    Text Solution

    |