Home
Class 12
MATHS
If f'(x(0)) exists, then lim(h to 0)([f(...

If `f'(x_(0))` exists, then `lim_(h to 0)([f(x_(0) +h) -f(x_(0) -h))/(2h))` is equal to:

A

`1/2f'(x_(0))`

B

`f'(x_(0))`

C

`2f'(x_(0))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit: \[ \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0 - h)}{2h} \] Given that \( f'(x_0) \) exists, we can use the definition of the derivative and properties of limits. ### Step 1: Rewrite the expression We can express the limit as: \[ \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0 - h)}{2h} \] ### Step 2: Split the limit Using the definition of the derivative, we can express \( f'(x_0) \) as: \[ f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \] And similarly, we can write: \[ f'(x_0) = \lim_{h \to 0} \frac{f(x_0) - f(x_0 - h)}{h} \] ### Step 3: Combine the derivatives Now, we can rewrite the limit we want to evaluate: \[ \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0 - h)}{2h} = \frac{1}{2} \left( \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} + \lim_{h \to 0} \frac{f(x_0) - f(x_0 - h)}{h} \right) \] ### Step 4: Substitute the derivatives Since both limits on the right-hand side are equal to \( f'(x_0) \), we can substitute: \[ \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0) \] \[ \lim_{h \to 0} \frac{f(x_0) - f(x_0 - h)}{h} = f'(x_0) \] ### Step 5: Final evaluation Thus, we have: \[ \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0 - h)}{2h} = \frac{1}{2} \left( f'(x_0) + f'(x_0) \right) = \frac{1}{2} \cdot 2f'(x_0) = f'(x_0) \] ### Conclusion Therefore, the final result is: \[ \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0 - h)}{2h} = f'(x_0) \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS) |2 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

If f '(2) =1, then lim _( h to 0 ) (f (2+ h ^(2)) -f ( 2- h ^(2)))/( 2h ^(2)) is equal to

the value of lim_(h to 0) (f(x+h)+f(x-h))/h is equal to

If f'(3)=2, then lim_(h rarr0)(f(3+h^(2))-f(3-h^(2)))/(2h^(2)) is

let f(x) be differentiable at x=h then lim_(x rarr h)((x+h)f(x)-2hf(h))/(x-h) is equal to

Which of the following statements are true? If fis differentiable at x=c, then lim_(h rarr0)(f(c+h)-f(c-h))/(2h) exists and equals f'(c)

ML KHANNA-LIMITS, CONTINUITY AND DIFFERENTIABILITY -PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS)
  1. If f(x)={{:(,(x log cos x)/(log(1+x^(2))),x ne 0),(,0,x=0):} then

    Text Solution

    |

  2. If x+4|y| = 6y then y as a function of x is

    Text Solution

    |

  3. If f'(x(0)) exists, then lim(h to 0)([f(x(0) +h) -f(x(0) -h))/(2h)) is...

    Text Solution

    |

  4. The function f(x) = {{:(|2x-3|[x], x ge 1),(sin((pix)/2), x lt 1):}

    Text Solution

    |

  5. The function f (x) is defined as under : f(x)={{:(3^(x), -1 le x le...

    Text Solution

    |

  6. A function is defined as follows : f(x) = {{:(x^(3), x^(2) lt 1),(x,...

    Text Solution

    |

  7. The left-hand derivative of f(x) =[x]sin (pix) at k an interger, is:

    Text Solution

    |

  8. If the derivative of the function f(x)={{:(ax^(2)+b,xlt-1),(bx^(2)+a...

    Text Solution

    |

  9. If f(x) = {{:(ax^(2) + b, b ne 0, x le 1),(bx^(2) + ax + c,, x gt 1):}...

    Text Solution

    |

  10. Let f(x) = a|x|^(2) + b|x| +c where a,b,c are real constants. Then f'(...

    Text Solution

    |

  11. Let h(x) = "min" {x,x^(2)} , for every real number of x. Then

    Text Solution

    |

  12. Let f : R to R be a function defined by f(x) = max. {x, x^(3)}. The s...

    Text Solution

    |

  13. The derivative of f(x) =|x| at x = 0 is:

    Text Solution

    |

  14. For a differentiable function f, the value of lim(h to 0) ([f(x+h)]^(2...

    Text Solution

    |

  15. If for a continuous function f,f(0)=f(1)=0,f^(prime)(1)=2a n dy(x)=f(e...

    Text Solution

    |

  16. The function f(x) = e^(|x|) is

    Text Solution

    |

  17. Let f(x) be defined as f(x) = {{:(sin 2x, 0 lt x lt pi/6),(px + q, p...

    Text Solution

    |

  18. Let f(x) = {{:(-1/|x|, "for " |x| ge 1),(ax^(2)-b, "for " |x| lt 1):},...

    Text Solution

    |

  19. The derivative of f(x) =|x|^(3) at x=0 is:

    Text Solution

    |

  20. If y=|tan (pi/4-x)|, then (dy)/(dx) at x=pi/4 is

    Text Solution

    |