Home
Class 12
MATHS
The function f (x) is defined as under :...

The function f (x) is defined as under :
`f(x)={{:(3^(x), -1 le x le 1),(4-x, 1 lt x lt 4):}`
The above function is:

A

continuous at x = 1

B

differentiable at x = 1

C

continuous but not differentiable at x = 1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the properties of the function \( f(x) \) defined as: \[ f(x) = \begin{cases} 3^x & \text{for } -1 \leq x \leq 1 \\ 4 - x & \text{for } 1 < x < 4 \end{cases} \] we need to check its continuity and differentiability at the point \( x = 1 \). ### Step 1: Check Continuity at \( x = 1 \) To check continuity at \( x = 1 \), we need to verify that: \[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) = f(1) \] **Left-hand limit:** \[ \lim_{x \to 1^-} f(x) = \lim_{h \to 0} f(1 - h) = \lim_{h \to 0} 3^{1 - h} = 3^1 = 3 \] **Right-hand limit:** \[ \lim_{x \to 1^+} f(x) = \lim_{h \to 0} f(1 + h) = \lim_{h \to 0} (4 - (1 + h)) = \lim_{h \to 0} (3 - h) = 3 \] **Function value at \( x = 1 \):** \[ f(1) = 3^1 = 3 \] Since both the left-hand limit and right-hand limit equal the function value at \( x = 1 \): \[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) = f(1) = 3 \] Thus, \( f(x) \) is continuous at \( x = 1 \). ### Step 2: Check Differentiability at \( x = 1 \) To check differentiability at \( x = 1 \), we need to find the left-hand derivative and right-hand derivative at this point. **Left-hand derivative:** \[ f'(1^-) = \lim_{h \to 0} \frac{f(1 - h) - f(1)}{-h} = \lim_{h \to 0} \frac{3^{1 - h} - 3}{-h} \] Using the formula for the derivative of an exponential function, we can rewrite this as: \[ = \lim_{h \to 0} \frac{3^{1 - h} - 3}{-h} = -3 \lim_{h \to 0} \frac{3^{-h} - 1}{h} = -3 \cdot \ln(3) \] **Right-hand derivative:** \[ f'(1^+) = \lim_{h \to 0} \frac{f(1 + h) - f(1)}{h} = \lim_{h \to 0} \frac{(4 - (1 + h)) - 3}{h} = \lim_{h \to 0} \frac{3 - h - 3}{h} = \lim_{h \to 0} \frac{-h}{h} = -1 \] ### Conclusion Since the left-hand derivative \( -3 \ln(3) \) does not equal the right-hand derivative \( -1 \): \[ f'(1^-) \neq f'(1^+) \] Thus, \( f(x) \) is not differentiable at \( x = 1 \). ### Final Answer The function \( f(x) \) is continuous at \( x = 1 \) but not differentiable at \( x = 1 \). ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS) |2 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

Let f (x) be defined as f (x) ={{:(|x|, 0 le x lt1),(|x-1|+|x-2|, 1 le x lt2),(|x-3|, 2 le x lt 3):} The range of function g (x)= sin (7 (f (x)) is :

If a function f(x) is defined as f(x) = {{:(-x",",x lt 0),(x^(2)",",0 le x le 1),(x^(2)-x + 1",",x gt 1):} then

The function f(x)= {(5x-4 ", " 0 lt x le 1 ),( 4x^3-3x", " 1 lt x lt 2):}

If f(x)={:{(x", for " 0 le x lt 1/2),(1-x", for " 1/2 le x lt 1):} , then

Let f be an even function defined on R. Suppose f is defined on [0,4] as follows: f(x) = {{:(3x, if, 0 le x lt 1),(4-x, if, 1 le x le 4):} and f satisfies the condition. f(x-2) = f{x + [(6x^(2) + 272)/(x^(2) + 2)]) AA x in R Where [x] = greatest integer le x . Then f(3271) +f(-2052) + f(806) =..............

Discuss the continuity of the function f, where f is defined by f(x){{:(3"," if 0 le x le 1),(4"," if 1lt x lt 3 ),(5"," if 3 le x le 10):}

A function f(x) is defined in the interval [1,4) as follows f(x)={{:(,log_(e)[x],1 le x lt 3),(,|log_(e)x|,3 le x lt 4):} . Then, the curve y=f(x)

Let a function f(x) defined on [3,6] be given by f(x)={{:(,log_(e)[x],3 le x lt5),(,|log_(e)x|,5 le x lt 6):} then f(x) is

ML KHANNA-LIMITS, CONTINUITY AND DIFFERENTIABILITY -PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS)
  1. If f'(x(0)) exists, then lim(h to 0)([f(x(0) +h) -f(x(0) -h))/(2h)) is...

    Text Solution

    |

  2. The function f(x) = {{:(|2x-3|[x], x ge 1),(sin((pix)/2), x lt 1):}

    Text Solution

    |

  3. The function f (x) is defined as under : f(x)={{:(3^(x), -1 le x le...

    Text Solution

    |

  4. A function is defined as follows : f(x) = {{:(x^(3), x^(2) lt 1),(x,...

    Text Solution

    |

  5. The left-hand derivative of f(x) =[x]sin (pix) at k an interger, is:

    Text Solution

    |

  6. If the derivative of the function f(x)={{:(ax^(2)+b,xlt-1),(bx^(2)+a...

    Text Solution

    |

  7. If f(x) = {{:(ax^(2) + b, b ne 0, x le 1),(bx^(2) + ax + c,, x gt 1):}...

    Text Solution

    |

  8. Let f(x) = a|x|^(2) + b|x| +c where a,b,c are real constants. Then f'(...

    Text Solution

    |

  9. Let h(x) = "min" {x,x^(2)} , for every real number of x. Then

    Text Solution

    |

  10. Let f : R to R be a function defined by f(x) = max. {x, x^(3)}. The s...

    Text Solution

    |

  11. The derivative of f(x) =|x| at x = 0 is:

    Text Solution

    |

  12. For a differentiable function f, the value of lim(h to 0) ([f(x+h)]^(2...

    Text Solution

    |

  13. If for a continuous function f,f(0)=f(1)=0,f^(prime)(1)=2a n dy(x)=f(e...

    Text Solution

    |

  14. The function f(x) = e^(|x|) is

    Text Solution

    |

  15. Let f(x) be defined as f(x) = {{:(sin 2x, 0 lt x lt pi/6),(px + q, p...

    Text Solution

    |

  16. Let f(x) = {{:(-1/|x|, "for " |x| ge 1),(ax^(2)-b, "for " |x| lt 1):},...

    Text Solution

    |

  17. The derivative of f(x) =|x|^(3) at x=0 is:

    Text Solution

    |

  18. If y=|tan (pi/4-x)|, then (dy)/(dx) at x=pi/4 is

    Text Solution

    |

  19. Which of the following functions is differentiable at x = 0 ?

    Text Solution

    |

  20. f(x)=||x|-1| is not differentiable at

    Text Solution

    |