Home
Class 12
MATHS
If y=|tan (pi/4-x)|, then (dy)/(dx) at x...

If `y=|tan (pi/4-x)|`, then `(dy)/(dx)` at `x=pi/4` is

A

`-1`

B

1

C

does not exist

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) at \(x = \frac{\pi}{4}\) for the function \(y = |\tan\left(\frac{\pi}{4} - x\right)|\), we will follow these steps: ### Step 1: Define the Function We start with the function: \[ y = |\tan\left(\frac{\pi}{4} - x\right)| \] ### Step 2: Analyze the Function We need to determine the behavior of \(\tan\left(\frac{\pi}{4} - x\right)\) around \(x = \frac{\pi}{4}\): - When \(x < \frac{\pi}{4}\), \(\frac{\pi}{4} - x > 0\) and thus \(\tan\left(\frac{\pi}{4} - x\right) > 0\). - When \(x = \frac{\pi}{4}\), \(\tan(0) = 0\). - When \(x > \frac{\pi}{4}\), \(\frac{\pi}{4} - x < 0\) and thus \(\tan\left(\frac{\pi}{4} - x\right) < 0\). Hence, we can express \(y\) as: \[ y = \begin{cases} \tan\left(\frac{\pi}{4} - x\right) & \text{if } x < \frac{\pi}{4} \\ 0 & \text{if } x = \frac{\pi}{4} \\ -\tan\left(\frac{\pi}{4} - x\right) & \text{if } x > \frac{\pi}{4} \end{cases} \] ### Step 3: Differentiate the Function Now we differentiate \(y\) with respect to \(x\) in the three cases: 1. **For \(x < \frac{\pi}{4}\)**: \[ \frac{dy}{dx} = \sec^2\left(\frac{\pi}{4} - x\right) \cdot (-1) = -\sec^2\left(\frac{\pi}{4} - x\right) \] 2. **For \(x = \frac{\pi}{4}\)**: \[ \frac{dy}{dx} = 0 \quad \text{(as } y = 0 \text{ at this point)} \] 3. **For \(x > \frac{\pi}{4}\)**: \[ \frac{dy}{dx} = -\sec^2\left(\frac{\pi}{4} - x\right) \cdot (-1) = \sec^2\left(\frac{\pi}{4} - x\right) \] ### Step 4: Evaluate the Derivatives at \(x = \frac{\pi}{4}\) Next, we need to evaluate the left-hand derivative and right-hand derivative at \(x = \frac{\pi}{4}\): - **Left-hand derivative**: \[ \lim_{h \to 0^-} \frac{dy}{dx} = -\sec^2(0) = -1 \] - **Right-hand derivative**: \[ \lim_{h \to 0^+} \frac{dy}{dx} = \sec^2(0) = 1 \] ### Step 5: Conclusion Since the left-hand derivative \(-1\) does not equal the right-hand derivative \(1\), the derivative \(\frac{dy}{dx}\) at \(x = \frac{\pi}{4}\) does not exist. Thus, the final answer is: \[ \frac{dy}{dx} \text{ at } x = \frac{\pi}{4} \text{ does not exist.} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (FILL IN THE BLANKS) |2 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Let y=tan((pi)/4+x/2) . Then (dy)/(dx) at x=(pi)/4

If y=tan3x+sin2x, then (dy)/(dx) at x=(pi)/(3) is

Find (dy)/(dx) if x-y=pi

If y=log[tan(pi/4 +x/2)]) ,then (dy)/(dx) is

If y=logsqrt(tanx)" then "(dy)/(dx)" at " x=(pi)/(4) is

If y=Cot^(-1)[tan((pi)/(2)-x)] then (dy)/(dx) =

If y=sec(tan^(-1)x), then (dy)/(dx)atx=1 is (a) (cos pi)/(4)(b)(sin pi)/(2)(c)(sin pi)/(6)(d)(cos pi)/(3)

If y=log sqrt(tan x), then the value of (dy)/(dx) at x=(pi)/(4) is given by oo(b)1(c)0(d)(1)/(2)

If Y = ((2 - 3 cos x)/("sin" x)) , then (dy)/(dx) at x = (pi)/(4) is

ML KHANNA-LIMITS, CONTINUITY AND DIFFERENTIABILITY -PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS)
  1. Let f(x) = {{:(-1/|x|, "for " |x| ge 1),(ax^(2)-b, "for " |x| lt 1):},...

    Text Solution

    |

  2. The derivative of f(x) =|x|^(3) at x=0 is:

    Text Solution

    |

  3. If y=|tan (pi/4-x)|, then (dy)/(dx) at x=pi/4 is

    Text Solution

    |

  4. Which of the following functions is differentiable at x = 0 ?

    Text Solution

    |

  5. f(x)=||x|-1| is not differentiable at

    Text Solution

    |

  6. The number of points at which the function f(x) =|x-0.5|+|x-1| + tan x...

    Text Solution

    |

  7. Consider, f(x) = {{:(x^(2)/(|x|), x ne 0),(0, x =0):}

    Text Solution

    |

  8. The function f(x) = (x^(2)-1)|x^(2) -3x+2| + cos(|x|) is not differen...

    Text Solution

    |

  9. Consider the following statements S and R: S: Both sin x and cos x a...

    Text Solution

    |

  10. If f(x) =x^(2) + x^(2)/(1+x^(2)) + x^(2)/(1+x^(2))^(2) + …… + x^(2)/(1...

    Text Solution

    |

  11. Let f(x) be a function satisfying f(x+y)=f(x)+f(y) and f(x)=x g(x)"For...

    Text Solution

    |

  12. Let f(x + y)=f(x)+f (y) and f(x) = x^2 g(x) for all x, y in R, where g...

    Text Solution

    |

  13. A differentiable function f (x) satisfies the condition f(x+y) =f(x) +...

    Text Solution

    |

  14. Let f(x + y) = f(x) f (y) for all x and y. Suppose that f(3) = 3 and f...

    Text Solution

    |

  15. Let f(x+y)=f(x) f(y) and f(x)=1+(sin 2x)g(x) where g(x) is continuous....

    Text Solution

    |

  16. Suppose the function f satisfies the conditions : (i) f(x+y) =f(x) f...

    Text Solution

    |

  17. A function f: R to R satisfies the equation f(x+y) =f(x) f(y) for al...

    Text Solution

    |

  18. If f is twice differentiable function such that f''(x) =-f(x), and f...

    Text Solution

    |

  19. Let F(x) =(f(x/2))^(2) +(g(x/2))^(2). F(5)=5 and f''(x) =-f(x), g(x) =...

    Text Solution

    |

  20. If f'(x)=g(x) and g'(x)=-f(x) for all x and f(2) =4 =f'(2) then f^(2)(...

    Text Solution

    |