Home
Class 12
MATHS
The maximum and minimum value of f(x) =a...

The maximum and minimum value of f(x) `=ab sin x +b sqrt(1-a^(2)) cos x + c` lie in the interval (assuming `|a| lt 1, b gt 0`)

A

`[(b - c), (b + c)]`

B

`[b -c , b + c]`

C

`[c - b, b + c]`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • MAXIMA AND MINIMA

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE )|1 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise PROBLEM SET(3) (MULTIPLE CHOICE QUESTIONS)|15 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE )|3 Videos
  • MATRICES

    ML KHANNA|Exercise COMPREHENSION|3 Videos
  • MEASURES OF CENTRAL TENDENCY

    ML KHANNA|Exercise ASSERTION / REASON|1 Videos

Similar Questions

Explore conceptually related problems

The minimum value of f(x)= a sin x+b cos x is

Find the maximum and minimum values of f(x)=sin x+(1)/(2)cos2x in [0,pi/2]

Maximum and minimum value of f(x) = max (sin t), 0 lt t lt x le 0 x le 2pi are

The maximum value of f(x)=a sin x +b cos x is

Find the maximum and minimum value of f(x)=sin x+(1)/(2)cos2x in [0,(pi)/(2)]

The value of f(x)=3sin sqrt(((pi^(2))/(16)-x^(2))) lie in the interval

The maximum and minimum values of f(x)=sin^(-1)x+cos^(-1)x+tan^(-1)x respectively is

Find the maximum and minimum value of y=a sin^(2)x+b sin x*cos x+c cos^(2)x

Let f(x)=ab sin x+bsqrt(1-a^(2))cosx+c , where |a|lt1,bgt0 then

Find the maximum and minimum values of the function f(x) = x+ sin 2x, (0 lt x lt pi) .