Home
Class 12
MATHS
f(x) = 1 + 2 sin x + 3 cos^2 x, ( 0 le x...

`f(x) = 1 + 2 sin x + 3 cos^2 x, ( 0 le x lt (2pi)/3)` is

A

Min. at `x = 90^@`

B

Max. at `x = sin^(-1) 1/sqrt3`

C

Min. at `x = 30^@`

D

Max. at `x = sin^(-1) (1/3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum and minimum points of the function \( f(x) = 1 + 2 \sin x + 3 \cos^2 x \) in the interval \( 0 \leq x < \frac{2\pi}{3} \), we will follow these steps: ### Step 1: Find the derivative of the function We start by differentiating \( f(x) \): \[ f'(x) = \frac{d}{dx}(1 + 2\sin x + 3\cos^2 x) \] Using the chain and product rules, we get: \[ f'(x) = 2\cos x + 3 \cdot 2\cos x(-\sin x) = 2\cos x - 6\cos x\sin x \] Thus, \[ f'(x) = 2\cos x(1 - 3\sin x) \] ### Step 2: Set the derivative to zero To find critical points, we set \( f'(x) = 0 \): \[ 2\cos x(1 - 3\sin x) = 0 \] This gives us two conditions: 1. \( \cos x = 0 \) 2. \( 1 - 3\sin x = 0 \) ### Step 3: Solve the conditions **Condition 1:** \( \cos x = 0 \) gives: \[ x = \frac{\pi}{2} \] **Condition 2:** \( 1 - 3\sin x = 0 \) gives: \[ \sin x = \frac{1}{3} \] Thus, \[ x = \sin^{-1}\left(\frac{1}{3}\right) \] ### Step 4: Find the second derivative Next, we find the second derivative \( f''(x) \): \[ f''(x) = \frac{d}{dx}(2\cos x(1 - 3\sin x)) \] Using the product rule: \[ f''(x) = -2\sin x(1 - 3\sin x) + 2\cos x(-3\cos x) = -2\sin x(1 - 3\sin x) - 6\cos^2 x \] ### Step 5: Evaluate the second derivative at critical points **At \( x = \frac{\pi}{2} \):** \[ f''\left(\frac{\pi}{2}\right) = -2\sin\left(\frac{\pi}{2}\right)(1 - 3\sin\left(\frac{\pi}{2}\right)) - 6\cos^2\left(\frac{\pi}{2}\right) \] \[ = -2(1)(1 - 3) - 6(0) = -2(-2) = 4 > 0 \] This indicates a local minimum at \( x = \frac{\pi}{2} \). **At \( x = \sin^{-1}\left(\frac{1}{3}\right) \):** We need to evaluate: \[ f''\left(\sin^{-1}\left(\frac{1}{3}\right)\right) \] Calculating this is more complex, but we can substitute \( \sin x = \frac{1}{3} \) and use \( \cos^2 x = 1 - \left(\frac{1}{3}\right)^2 = \frac{8}{9} \): \[ f''\left(\sin^{-1}\left(\frac{1}{3}\right)\right) = -2\left(\frac{1}{3}\right)\left(1 - 1\right) - 6\left(\frac{8}{9}\right) = -\frac{48}{9} < 0 \] This indicates a local maximum at \( x = \sin^{-1}\left(\frac{1}{3}\right) \). ### Step 6: Conclusion Thus, we have: - Minimum at \( x = \frac{\pi}{2} \) - Maximum at \( x = \sin^{-1}\left(\frac{1}{3}\right) \)
Promotional Banner

Topper's Solved these Questions

  • MAXIMA AND MINIMA

    ML KHANNA|Exercise PROBLEM SET (2) (TRUE AND FALSE )|1 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise PROBLEM SET(3) (MULTIPLE CHOICE QUESTIONS)|15 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE )|3 Videos
  • MATRICES

    ML KHANNA|Exercise COMPREHENSION|3 Videos
  • MEASURES OF CENTRAL TENDENCY

    ML KHANNA|Exercise ASSERTION / REASON|1 Videos

Similar Questions

Explore conceptually related problems

If : sin x +cos x = sin 2 x + cos 2 x , "where" 0 lt x le (pi)/(2), "then x":=

The number of solution of sin x+sin 2x+sin 3x =cos x +cos 2x+cos 3x, 0 le x le 2pi , is

If f (x) = tan ^(-1)sqrt((1 + sin x )/(1 - sin x)), 0 le x le (pi)/(2) then f' ((pi)/(6)) =?

The values of a and b so that the function f(x) = {{:(x + a sqrt(2) sin x",",0 le x lt pi//4),(2 x cot x + b",",pi//4 le x le pi//2),(a cos 2 x - b sin x",",pi//2 lt x le pi):} is continuous for x in [0, pi] , are