Home
Class 12
MATHS
int e^(3 log x) . (x^4 + 1)^(-1) dx =...

`int e^(3 log x) . (x^4 + 1)^(-1) dx =`

A

`"log" (x^4 + 1)`

B

`3log (x^4 + 1)`

C

`-log (x^4 + 1)`

D

`1/4 "log" (x^4 + 1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int e^{3 \log x} \cdot (x^4 + 1)^{-1} \, dx, \] we will follow these steps: ### Step 1: Simplify the integrand Using the property of logarithms, we can rewrite \( e^{3 \log x} \) as follows: \[ e^{3 \log x} = e^{\log(x^3)} = x^3. \] So, we can rewrite the integral as: \[ \int x^3 \cdot (x^4 + 1)^{-1} \, dx. \] ### Step 2: Rewrite the integral Now, we can express the integral in a simpler form: \[ \int \frac{x^3}{x^4 + 1} \, dx. \] ### Step 3: Use substitution Let’s use the substitution \( t = x^4 + 1 \). Then, we differentiate \( t \): \[ dt = 4x^3 \, dx \implies dx = \frac{dt}{4x^3}. \] ### Step 4: Substitute into the integral Now, substituting \( t \) and \( dx \) into the integral, we have: \[ \int \frac{x^3}{t} \cdot \frac{dt}{4x^3} = \int \frac{1}{4t} \, dt. \] ### Step 5: Integrate Now, we can integrate: \[ \int \frac{1}{4t} \, dt = \frac{1}{4} \ln |t| + C. \] ### Step 6: Substitute back for \( t \) Now, we substitute back \( t = x^4 + 1 \): \[ \frac{1}{4} \ln |x^4 + 1| + C. \] ### Final Answer Thus, the final result of the integral is: \[ \int e^{3 \log x} \cdot (x^4 + 1)^{-1} \, dx = \frac{1}{4} \ln(x^4 + 1) + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int e^(3log x)(x^(4)+1)^(-1)dx

Evaluate: int e^(3log x)(x^(4)+1)^(-1)dx

int x^(4)(1+log x)dx

int e^(x) (e^(log x)+1) dx

If int_(ln2)^(x) (e^(x) - 1)^(-1) dx = ln'3/2 then what is the value of x ?

int_(1)^(e) log (x) dx=

int e^(x)((1+x log x)/(x))dx

Evaluate: int e^(x)(log x+(1)/(x^(2)))dx

int_(1)^(3)(log x)/(x)dx

inte^(-x)log(e^x+1)dx