Home
Class 12
MATHS
Let F(x)""=""f(x)""+""f(1/x),"w h e r e"...

Let `F(x)""=""f(x)""+""f(1/x),"w h e r e"f(x)=int_t^x(logt)/(1+t)dtdot` (1) `1/2` (2) 0 (3) 1 (4) 2

A

`1/2`

B

`0`

C

`1`

D

`2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

Let F(x)=f(x)+f((1)/(x)), where f(x)=int_(t)^(x)(log t)/(1+t)dt (1) (1)/(2)(2)0(3)1(4)2

f(x)=int_1^x lnt/(1+t) dt , f(e)+f(1/e)=

Let F (x) = f(x) + f ((1)/(x)), where f (x) = int _(1) ^(x ) (log t)/(1+t) dt. Then F (e) equals

If int_0^x f(t)dt=x+int_x^1 t f(t)dt , then f(1)= (A) 1/2 (B) 0 (C) 1 (D) -1/2

If f(x)=int_(1)^(x)(logt)/(1+t+t^(2)) , AAx ge 1 , then f(2) is equal to

Let f(x)=int_(x^(2))^(x^(3)) for x>1 and g(x)=int_(1)^(x)(2t^(2)-Int)f(t)dt(x<1) then

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

Let g(x) be inverse of f(x) and f(x) is given by f(x)=int_(3)^(x)(1)/(sqrt(t^(4)+3t^(2)+13))dt then g^(1)(0)=

Let f:(0,oo) in R be given f(x)=int_(1//x)^(x) e^-(t+(1)/(t))(1)/(t)dt , then