Home
Class 12
MATHS
If f(theta) = [cos i theta - i sin i the...

If `f(theta) = [cos i theta - i sin i theta],i=sqrt(-1)` then the value of `int_(-3)^(-1) [f (theta) + f(2 theta) + f(3 theta) + .....oo] d theta `=

A

`"log"(1 + e + e^2]`

B

`"log" (1 + e^(-1) + e^2]`

C

`"log" (1 + e + e^(-1))`

D

`"log" (1 + e^(-1) + e^(-2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given integral, we start by analyzing the function \( f(\theta) \) defined as: \[ f(\theta) = \cos(i\theta) - i\sin(i\theta) \] Using the properties of exponential functions, we can express \( f(\theta) \) in terms of the exponential function: \[ f(\theta) = \cos(i\theta) - i\sin(i\theta) = e^{i(i\theta)} = e^{-\theta} \] Now, we need to compute the integral: \[ \int_{-3}^{-1} [f(\theta) + f(2\theta) + f(3\theta) + \ldots] \, d\theta \] Substituting for \( f(n\theta) \): \[ f(n\theta) = e^{-n\theta} \] Thus, we have: \[ f(\theta) + f(2\theta) + f(3\theta) + \ldots = e^{-\theta} + e^{-2\theta} + e^{-3\theta} + \ldots \] This series is a geometric series with the first term \( a = e^{-\theta} \) and common ratio \( r = e^{-\theta} \). The sum of an infinite geometric series is given by: \[ S = \frac{a}{1 - r} = \frac{e^{-\theta}}{1 - e^{-\theta}} \quad \text{for } |r| < 1 \] Now, we can rewrite the integral: \[ \int_{-3}^{-1} \frac{e^{-\theta}}{1 - e^{-\theta}} \, d\theta \] Next, we simplify the integral. We can use the substitution \( u = e^{-\theta} \), which gives \( du = -e^{-\theta} d\theta \) or \( d\theta = -\frac{du}{u} \). The limits change as follows: - When \( \theta = -3 \), \( u = e^{3} \) - When \( \theta = -1 \), \( u = e^{1} \) Thus, the integral becomes: \[ -\int_{e^{3}}^{e^{1}} \frac{u}{1 - u} \left(-\frac{du}{u}\right) = \int_{e^{3}}^{e^{1}} \frac{1}{1 - u} \, du \] Now we can compute this integral: \[ \int \frac{1}{1 - u} \, du = -\log|1 - u| \] Evaluating the definite integral: \[ \left[-\log|1 - u|\right]_{e^{3}}^{e^{1}} = -\log|1 - e| + \log|1 - e^{3}| \] This simplifies to: \[ \log\left(\frac{|1 - e^{3}|}{|1 - e|}\right) \] Thus, the final result of the integral is: \[ \log\left(\frac{1 - e^{3}}{1 - e}\right) \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

If f(theta)=(cos i theta-i sin i theta),i=sqrt(-1) then the value of int_(-3)^(-1)[f(theta)+f(2 theta)+f(3 theta)+...oo]dx=

If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos theta sin theta , sin^(2) theta , cos theta ],[sin theta ,-cos theta , 0]] "then " f (pi/7) is

Let f(theta)=sin theta(sin theta +sin 3 theta). " Then " f(theta)

Let f(theta)=sin theta(sin theta+sin3 theta)* then

If f(theta)=(1-sin2 theta+cos2 theta)/(2sin2 theta) then value of f(11^(@))*f(34^(@)) is

If f(theta)=[(cos theta, -sin theta,0),(sin theta, cos theta, 0),(0,0,1)] then {f(theta)^(-1)} is equal to

If f(theta) = 1 + sin [pi/4 + theta] + cos (pi/4 + theta) . find the range of values of f(theta)

If f(theta) = 1 + sin [pi/4 + theta] + cos (pi/4 + theta) . find the range of values of f(theta)