Home
Class 12
MATHS
int (sin x)/(sin x - cos x) dx =...

`int (sin x)/(sin x - cos x) dx = `

A

`x + "log" (sin x - cos x)`

B

`1/2 [x + "log" (sin x - cos x)]`

C

`x - log "sin" (x + pi/4)`

D

`x + log cos (x + pi/4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sin x}{\sin x - \cos x} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{\sin x}{\sin x - \cos x} \, dx \] To simplify the expression, we can multiply and divide by 2: \[ I = \int \frac{2\sin x}{2(\sin x - \cos x)} \, dx = \int \frac{2\sin x}{2\sin x - 2\cos x} \, dx \] ### Step 2: Split the Integral Now, we can express the integrand as a sum of two fractions: \[ I = \int \left(1 + \frac{\cos x + \sin x}{\sin x - \cos x}\right) \, dx \] This gives us: \[ I = \int 1 \, dx + \int \frac{\cos x + \sin x}{\sin x - \cos x} \, dx \] ### Step 3: Integrate the First Part The first integral is straightforward: \[ \int 1 \, dx = x \] ### Step 4: Substitute for the Second Integral Now, we focus on the second integral: \[ \int \frac{\cos x + \sin x}{\sin x - \cos x} \, dx \] We can use substitution. Let: \[ t = \sin x - \cos x \] Then, the derivative \( dt \) is: \[ dt = (\cos x + \sin x) \, dx \] Thus, we can rewrite the second integral in terms of \( t \): \[ \int \frac{dt}{t} \] ### Step 5: Integrate the Second Part The integral of \( \frac{1}{t} \) is: \[ \int \frac{dt}{t} = \ln |t| + C \] Substituting back for \( t \): \[ \int \frac{\cos x + \sin x}{\sin x - \cos x} \, dx = \ln |\sin x - \cos x| + C \] ### Step 6: Combine the Results Putting everything together, we have: \[ I = x + \ln |\sin x - \cos x| + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{\sin x}{\sin x - \cos x} \, dx = x + \ln |\sin x - \cos x| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int_ (0) ^ ((pi) / (2)) (sin x) / (sin x + cos x) dx = int_ (0) ^ ((pi) / (2)) (cos x) / (sin x + cos x) dx = int_ (0) ^ ((pi) / (2)) (dx) / (1 + cot x) = int_ (0) ^ ((pi) / (2)) (dx) / ( 1 + time x) = (pi) / (4)

int(sin x)/(1+sin x+cos x)dx

int 1/(sin x cos x) dx

int(sin x+cos x)/(sin x-cos x)dx

int (1) / (sin x cos x) dx

int(sin x+cosx)/(sin x-cos x)^2dx

Prove that : int_(0)^(a) f(x) dx = int_(0)^(a) f(a-x)dx hence evaluate : int_(0)^(pi//2) (sin x)/(sin x + cos x) dx