Home
Class 12
MATHS
Prove that sqrt(2) int("sin" x dx)/("s...

Prove that
`sqrt(2) int("sin" x dx)/("sin" (x - pi/4)) = x + "log" |"sin" (x - pi/4)|`

Text Solution

Verified by Experts

The correct Answer is:
True
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

The value of sqrt(2)int(sin xdx)/(sin(x-(pi)/(4)))

The value of sqrt(2)int(sinx)/(sin(x-(pi)/(4)))dx , is

Prove that: int_(0)^( pi/2)(sin x)/(sin x-cos x)dx=(pi)/(4)

The value of sqrt(2)int(sin xdx)/(sin(x-(pi)/(4))) is: (1)x+log|cos(x-(pi)/(4))|+c(2)x-log|sin(x-(pi)/(4))|+c(2)x+log|sin(x-(pi)/(4))|+c(3)x-log|cos(x-(pi)/(4))|+c

Prove that int log sin x dx = - (pi/2)log2

Prove that : int_(0)^(pi) (x sin x)/(1+cos^(2)x) dx =(pi^(2))/(4)

Prove that : int_(0)^(pi//2) (x sin x cos x)/(sin^(4) x+ cos^(4)x)dx =(pi)/(16)

int_(pi//4)^(pi//2) cos 2 x log sin x " " dx=

Prove that : int_(0)^(pi//2) (sin x-cos x)/(1+sin x cos x)dx=0 " (ii) Prove that " : int_(0)^(pi//2) sin 2x. log (tan-x) dx=0

Prove that : int_(0)^(pi//2) (sin x -cos x) log (sin^(3) x + cos^(3)x) dx=0