Home
Class 12
MATHS
If int0^(pi//3) . ("cos x")/(3 + 4 "sin ...

If `int_0^(pi//3) . ("cos x")/(3 + 4 "sin " x) dx = k "log" ((3 + 2sqrt(3))/(3))` then k is

A

`1/2`

B

`1/3`

C

`1/4`

D

`1/8`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int_0^{\frac{\pi}{3}} \frac{\cos x}{3 + 4 \sin x} \, dx = k \log\left(\frac{3 + 2\sqrt{3}}{3}\right), \] we will follow these steps: ### Step 1: Substitution Let \( t = 3 + 4 \sin x \). Then, we differentiate \( t \): \[ dt = 4 \cos x \, dx \quad \Rightarrow \quad dx = \frac{dt}{4 \cos x}. \] Also, we need to change the limits of integration. When \( x = 0 \): \[ t = 3 + 4 \sin(0) = 3. \] When \( x = \frac{\pi}{3} \): \[ t = 3 + 4 \sin\left(\frac{\pi}{3}\right) = 3 + 4 \cdot \frac{\sqrt{3}}{2} = 3 + 2\sqrt{3}. \] ### Step 2: Rewrite the Integral Now, substituting \( t \) into the integral: \[ \int_3^{3 + 2\sqrt{3}} \frac{\cos x}{t} \cdot \frac{dt}{4 \cos x} = \frac{1}{4} \int_3^{3 + 2\sqrt{3}} \frac{1}{t} \, dt. \] ### Step 3: Evaluate the Integral The integral of \( \frac{1}{t} \) is: \[ \int \frac{1}{t} \, dt = \log |t|. \] Thus, we have: \[ \frac{1}{4} \left[ \log |t| \right]_3^{3 + 2\sqrt{3}} = \frac{1}{4} \left( \log(3 + 2\sqrt{3}) - \log(3) \right). \] Using the property of logarithms \( \log a - \log b = \log \left( \frac{a}{b} \right) \): \[ = \frac{1}{4} \log \left( \frac{3 + 2\sqrt{3}}{3} \right). \] ### Step 4: Compare with Given Expression We have: \[ \frac{1}{4} \log \left( \frac{3 + 2\sqrt{3}}{3} \right) = k \log \left( \frac{3 + 2\sqrt{3}}{3} \right). \] Dividing both sides by \( \log \left( \frac{3 + 2\sqrt{3}}{3} \right) \) (assuming it is non-zero): \[ \frac{1}{4} = k. \] ### Conclusion Thus, the value of \( k \) is: \[ \boxed{\frac{1}{4}}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int_0^(pi//2) (cos x)/(3 cos x+sin x) dx

If int_(0)^((pi)/(3))(cos x)/(3+4sin x)dx=k log((3+2sqrt(3))/(3)) then k is equal to

int_(0)^(pi//2)(cos x)/((3+sin x)(4+sin x))dx=

int_(0)^( pi/3)(cos x)/(3+4sin x)dx

int_(0)^(pi//4) (sin x +cos x)/(3+sin2x)dx is equal to

int_(0)^((pi)/(4))((sin x+cos x)/(3+sin2x))dx

int_0^(pi) sin3x dx=2/3

int_(0)^(2 pi)(cos x)/(sqrt(4+3sin x))dx

int_(pi/6)^(pi/3) (sin x+ cos x)/(sqrt(sin 2x))dx