Home
Class 12
MATHS
int(10 x^9 + 10^x "log"e 10)/(x^10 + 10^...

`int(10 x^9 + 10^x "log"_e 10)/(x^10 + 10^x) dx` equals

A

`10^x - x^10`

B

`10^x + x^10`

C

`(10^x - x^10)`

D

`"log" (10^x + x^10)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int(10x^(9)+10x^(x)log_(e^(10))dx)/(x^(10)+10^(x)) equals (A) 10^(x)-x^(10)+C (B) ( C) log(10^(x)+x^(10))+C

int(10x^(9)+10^(x)log_(e)10)/(10^(x)+x^(10))dx=

int10^(x)dx

If x^(2"log"_(10)x) = 1000x , then x equals to

Evaluate: int(10x^(9)+10^(x)log_(e)10)/(10^(x)+x^(10))dx

Evaluate: (i) int(10x^(9)+10^(x)(log)_(e)10)/(10^(x)+x^(10))dx (ii) int(1-sin2x)/(x+cos^(2)x)dx

int e^x (1 + 10 x^9 - x^20)/((1 - x^(10))sqrt(1 - x^(20))) dx equal to: (where c is an integral constant)