Home
Class 12
MATHS
int(tan(logx))/(x) dx =...

`int(tan(logx))/(x) dx` =

A

`"log cos" (log x)`

B

`"log sec "("log" x)`

C

`"log sin " ("log" x)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\tan(\log x)}{x} \, dx \), we will use substitution. Here are the steps: ### Step 1: Substitution Let \( t = \log x \). Then, we differentiate both sides with respect to \( x \): \[ \frac{dt}{dx} = \frac{1}{x} \implies dt = \frac{1}{x} \, dx \implies dx = x \, dt \] Since \( x = e^t \), we can rewrite \( dx \) as: \[ dx = e^t \, dt \] ### Step 2: Rewrite the Integral Now we can substitute \( t \) into the integral: \[ \int \frac{\tan(\log x)}{x} \, dx = \int \tan(t) \, dt \] ### Step 3: Integrate The integral of \( \tan(t) \) is: \[ \int \tan(t) \, dt = -\log|\cos(t)| + C \] ### Step 4: Substitute Back Now we substitute back \( t = \log x \): \[ -\log|\cos(\log x)| + C \] ### Final Answer Thus, the final answer is: \[ -\log|\cos(\log x)| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int(tan(2+3logx))/(x)dx=

int(cos(logx))/(x)dx

int((logx)^n)/(x)dx=

int(logx)/(x^3)dx=

int((logx)^(2))/(x)dx.

int(logx)/(x)dx=?

int(logx-1)/(x)dx

Evaluate : int_(a)^(b)(logx)/(x) dx .

int (logx)^3/(x)dx

int(sqrt((2+logx)))/(x)dx