Home
Class 12
MATHS
int tan x tan 2x tan 3x dx...

`int tan x tan 2x tan 3x dx `

A

`-1/3 "log sin 3x" + 1/2 "log sin 2x" +"log sin x"`

B

`-1/3 "log cos 3x" + 1/2 "log cos 2x " + "log cos x"`

C

`-1/3 "log sin 3x" + 1/2 "log cos 2x " + "log sin x"`

D

`-1/3 "log cos 3x" + 1/2 "log sin 2x " + "log cos x"`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \tan x \tan 2x \tan 3x \, dx \), we can use the properties of trigonometric functions and some identities. Here’s a step-by-step solution: ### Step 1: Rewrite the integral We start with the integral: \[ I = \int \tan x \tan 2x \tan 3x \, dx \] ### Step 2: Use the identity for tangent Recall that: \[ \tan A = \frac{\sin A}{\cos A} \] Thus, we can rewrite the integral as: \[ I = \int \frac{\sin x}{\cos x} \cdot \frac{\sin 2x}{\cos 2x} \cdot \frac{\sin 3x}{\cos 3x} \, dx \] ### Step 3: Expand the product Now, we can express the product of sines and cosines: \[ I = \int \frac{\sin x \sin 2x \sin 3x}{\cos x \cos 2x \cos 3x} \, dx \] ### Step 4: Use the product-to-sum identities We can apply the product-to-sum identities for sine functions: \[ \sin A \sin B = \frac{1}{2} [\cos(A-B) - \cos(A+B)] \] Using this identity, we can simplify \( \sin x \sin 2x \) and then multiply by \( \sin 3x \). ### Step 5: Simplify the integral After applying the product-to-sum identities, we will have a more manageable integral. Let’s denote the resulting integral as \( J \): \[ J = \int f(x) \, dx \] where \( f(x) \) is the simplified function obtained from the previous step. ### Step 6: Solve the integral Now we can integrate \( J \) using standard integration techniques. This may involve further simplification or substitution. ### Step 7: Combine results Finally, we will combine the results of our integration and apply any necessary constants of integration. ### Final Result The final result will be: \[ I = \text{(result from integrating } J\text{)} + C \] where \( C \) is the constant of integration.
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

Evaluate int tanx tan 2x tan 3x dx .

int tan x tan2x tan3xdx

int tan x tan2x tan3xdx=

Evaluate: int tan x tan2x tan3xdx

Evaluate : int tan 2x tan 3x tan 5x dx

int tan 2 x tan 3x tan 5x dx = log | sec^(a) 2x. Sec^(b) 3x. Sec^(c) 5x| + k . Then:\

inttanx tan 2x tan 3x dx is equal to

Differentiate (tanx tan 2x tan 3x tan 4x) w.r.t. x.

Solve tan x+tan 2x+tan 3x = tan x tan 2x tan 3x, x in [0, pi] .

int tan2x tan3x tan5xdx