Home
Class 12
MATHS
int(cos(log x))/(x) dx =...

`int(cos(log x))/(x) dx` =

A

`sin [log (logx)]`

B

`log [sin (log x)]`

C

`log[cos (log x)]`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\cos(\log x)}{x} \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = \log x \). Then, we differentiate both sides to find \( dx \): \[ dt = \frac{1}{x} \, dx \quad \Rightarrow \quad dx = x \, dt \] Since \( x = e^t \), we can express \( dx \) in terms of \( t \): \[ dx = e^t \, dt \] ### Step 2: Rewrite the Integral Substituting \( t = \log x \) into the integral, we have: \[ \int \frac{\cos(\log x)}{x} \, dx = \int \cos(t) \, dt \] ### Step 3: Integrate Now we can integrate \( \cos(t) \): \[ \int \cos(t) \, dt = \sin(t) + C \] ### Step 4: Back Substitute Now we need to substitute back \( t = \log x \): \[ \sin(t) = \sin(\log x) \] Thus, the integral becomes: \[ \int \frac{\cos(\log x)}{x} \, dx = \sin(\log x) + C \] ### Final Answer The final result is: \[ \int \frac{\cos(\log x)}{x} \, dx = \sin(\log x) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int(log(log x))/(x)dx

int(cos(a+b log x))/(x)dx

int cos(log x)dx

int(log(log x))/(x)dx) is

int(cos^(2) (log .x))/(x)dx

Evaluate: int((log(log x))/(x)dx

Evaluate: int((log(log x))/(x)dx

Evaluate : int_(1)^(2) (cos (log x))/(x) dx

int cos(2log x)dx

int_(1)^(3)(cos(log x))/(x)dx