Home
Class 12
MATHS
int(dx)/(cos x + sqrt(3) sin x) equals :...

`int(dx)/(cos x + sqrt(3) sin x)` equals :

A

`1/2 "log tan"(x/2 + pi/12) + C`

B

`1/2 "log tan"(x/2 - pi/12) + C`

C

`"log tan"(x/2 + pi/12) + C`

D

`"log tan"(x/2 +- pi/12) + C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{dx}{\cos x + \sqrt{3} \sin x} \] we will follow these steps: ### Step 1: Multiply numerator and denominator by \( \frac{1}{2} \) We start by multiplying both the numerator and the denominator by \( \frac{1}{2} \): \[ \int \frac{dx}{\cos x + \sqrt{3} \sin x} = \int \frac{\frac{1}{2} dx}{\frac{1}{2} \cos x + \frac{\sqrt{3}}{2} \sin x} \] ### Step 2: Recognize the denominator as a sine function Notice that \( \frac{1}{2} \cos x + \frac{\sqrt{3}}{2} \sin x \) can be expressed in terms of sine. We can rewrite it as: \[ \frac{1}{2} \cos x + \frac{\sqrt{3}}{2} \sin x = \sin\left(\frac{\pi}{6}\right) \cos x + \cos\left(\frac{\pi}{6}\right) \sin x \] This is of the form \( \sin(a + b) \) where \( a = x \) and \( b = \frac{\pi}{6} \): \[ = \sin\left(x + \frac{\pi}{6}\right) \] ### Step 3: Substitute into the integral Now we can rewrite the integral: \[ \int \frac{\frac{1}{2} dx}{\sin\left(x + \frac{\pi}{6}\right)} = \frac{1}{2} \int \frac{dx}{\sin\left(x + \frac{\pi}{6}\right)} \] ### Step 4: Integrate using the logarithmic identity The integral of \( \frac{1}{\sin u} \) is \( \log \left| \tan\left(\frac{u}{2}\right) \right| + C \). Therefore, we have: \[ \frac{1}{2} \int \frac{dx}{\sin\left(x + \frac{\pi}{6}\right)} = \frac{1}{2} \log \left| \tan\left(\frac{x + \frac{\pi}{6}}{2}\right) \right| + C \] ### Step 5: Final answer Thus, the final answer is: \[ \frac{1}{2} \log \left| \tan\left(\frac{x + \frac{\pi}{6}}{2}\right) \right| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int (1) / (cos x + sqrt (3) sin x) equals

int(dx)/(cos2x+sqrt(3)sin2x)

int (1) / (cos x + sqrt (3) sin x) dx equals

int (1) / (cos x + sqrt (3) sin x) dx

int (dx) / (sin x + sqrt (3) cos x) =

The value of int(dx)/(cos^(3)x sqrt(sin2x)) is equal to

int(dx)/(cos^(3)xsqrt(2sin 2x)) is equal to

int (dx) / (sin x-cos x + sqrt (2)) equals