Home
Class 12
MATHS
int(sin x - cos x)/(sqrt(1 - sin 2x)) e^...

`int(sin x - cos x)/(sqrt(1 - sin 2x)) e^("sin x") cos x dx` is equal to

A

`e^(sin x) + C`

B

`e^(sin x - cos x) + c`

C

`e^(sin x + cos x) + c`

D

`e^(cos x - sin x) + c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{\sin x - \cos x}{\sqrt{1 - \sin 2x}} e^{\sin x} \cos x \, dx, \] we will follow these steps: ### Step 1: Simplify the Denominator Recall that \(\sin 2x = 2 \sin x \cos x\). Thus, we can rewrite the denominator: \[ 1 - \sin 2x = 1 - 2 \sin x \cos x. \] Now, we can express \(1\) as \(\sin^2 x + \cos^2 x\): \[ 1 - \sin 2x = \sin^2 x + \cos^2 x - 2 \sin x \cos x = (\sin x - \cos x)^2. \] ### Step 2: Rewrite the Integral Now substituting this back into the integral gives us: \[ \int \frac{\sin x - \cos x}{\sqrt{(\sin x - \cos x)^2}} e^{\sin x} \cos x \, dx. \] Since \(\sqrt{(\sin x - \cos x)^2} = |\sin x - \cos x|\), we can assume \(\sin x - \cos x\) is positive in the interval we are considering, thus simplifying to: \[ \int \frac{\sin x - \cos x}{\sin x - \cos x} e^{\sin x} \cos x \, dx = \int e^{\sin x} \cos x \, dx. \] ### Step 3: Substitution Now, we will use the substitution \(t = \sin x\). Then, \(dt = \cos x \, dx\). The integral now becomes: \[ \int e^t \, dt. \] ### Step 4: Integrate The integral of \(e^t\) is simply: \[ e^t + C. \] ### Step 5: Back Substitute Now, we substitute back \(t = \sin x\): \[ e^{\sin x} + C. \] ### Final Answer Thus, the final answer is: \[ \int \frac{\sin x - \cos x}{\sqrt{1 - \sin 2x}} e^{\sin x} \cos x \, dx = e^{\sin x} + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int((sin x+cos x)/(sqrt(sin2x))dx

int e^(x)(cos x-sin x)dx is equal to

int e^(2x) sin x cos x dx

int (cos x - sin x)/(1 + sin 2x) dx

int 1/(sin^2x cos^2x )dx is equal to:

int(cos x-sin x)/(sqrt(sin2x))dx

int (cos x)/( sin x+sqrt(sin x)) dx

int(cos x)/(sin^(2)x(sin x+cos x))dx is equal to