Home
Class 12
MATHS
int(cos 2x)/(cosx) dx is equal to...

`int(cos 2x)/(cosx) dx` is equal to

A

`2 sin x + log (sec x - tan x) + c`

B

`2 sin x - log(sec x - tan x) + c`

C

`2 sin x + log( sec x + tan x) + c`

D

`2 sin x - log(sec x + tan x) + c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{\cos 2x}{\cos x} \, dx\), we can follow these steps: ### Step 1: Rewrite \(\cos 2x\) We start by using the double angle formula for cosine: \[ \cos 2x = 2\cos^2 x - 1 \] Thus, we can rewrite the integral as: \[ \int \frac{\cos 2x}{\cos x} \, dx = \int \frac{2\cos^2 x - 1}{\cos x} \, dx \] ### Step 2: Separate the Integral Now, we can separate the integral into two parts: \[ \int \frac{2\cos^2 x - 1}{\cos x} \, dx = \int \frac{2\cos^2 x}{\cos x} \, dx - \int \frac{1}{\cos x} \, dx \] This simplifies to: \[ \int 2\cos x \, dx - \int \sec x \, dx \] ### Step 3: Integrate Each Term Now, we can integrate each term separately. 1. For \(\int 2\cos x \, dx\): \[ \int 2\cos x \, dx = 2\sin x \] 2. For \(\int \sec x \, dx\): The integral of \(\sec x\) is: \[ \int \sec x \, dx = \ln |\sec x + \tan x| + C \] ### Step 4: Combine the Results Now, we can combine the results from the two integrals: \[ \int \frac{\cos 2x}{\cos x} \, dx = 2\sin x - \ln |\sec x + \tan x| + C \] ### Final Answer Thus, the final answer is: \[ 2\sin x - \ln |\sec x + \tan x| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

The value of int(cos2x)/(cosx) dx is equal to

int (cos2x)/(cosx) dx=

int (cosx)/(cos 3x)dx

int _(0)^(pi//4) log ((sin x+ cos x)/(cosx))dx is equal to

int(x+sinx)/(1+cosx)\ dx is equal to

int(1-cosx)cosec^(2)x dx is equal to

int(cos2x)/(cosx-sinx)dx=