Home
Class 12
MATHS
int sqrt((e^x - 1)/(e^x + 1)) dx =...

`int sqrt((e^x - 1)/(e^x + 1)) dx ` =

A

`log (e^x + sqrt(e^(2x) - 1)) - sec^(-1) e^x`

B

`log (e^x + sqrt(e^(zx) - 1)) + sec^(-1) e^x`

C

`log (e^x - sqrt(e^(zx) - 1)) - sec^(-1) e^x`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sqrt{\frac{e^x - 1}{e^x + 1}} \, dx \), we can follow these steps: ### Step 1: Simplifying the Integral We start with the integral: \[ I = \int \sqrt{\frac{e^x - 1}{e^x + 1}} \, dx \] To simplify the expression under the square root, we can multiply the numerator and denominator by \(-1\): \[ I = \int \sqrt{\frac{-(e^x - 1)}{-(e^x + 1)}} \, dx = \int \sqrt{\frac{1 - e^x}{1 + e^x}} \, dx \] ### Step 2: Substitution Let \( e^x = t \). Then, \( dx = \frac{dt}{t} \). The integral becomes: \[ I = \int \sqrt{\frac{1 - t}{1 + t}} \cdot \frac{dt}{t} \] ### Step 3: Separating the Integral We can separate the integral: \[ I = \int \frac{\sqrt{1 - t}}{t \sqrt{1 + t}} \, dt \] ### Step 4: Further Simplification We can rewrite this integral as: \[ I = \int \frac{\sqrt{1 - t}}{\sqrt{1 + t}} \cdot \frac{1}{t} \, dt \] ### Step 5: Using Trigonometric Substitution To simplify the integral further, we can use the substitution \( t = \sin^2(\theta) \), which gives us: \[ dt = 2 \sin(\theta) \cos(\theta) \, d\theta \] Then, we have: \[ I = \int \frac{\sqrt{1 - \sin^2(\theta)}}{\sqrt{1 + \sin^2(\theta)}} \cdot \frac{2 \sin(\theta) \cos(\theta)}{\sin^2(\theta)} \, d\theta \] This simplifies to: \[ I = 2 \int \frac{\cos^2(\theta)}{\sin^2(\theta) \sqrt{1 + \sin^2(\theta)}} \, d\theta \] ### Step 6: Final Integration Now we can integrate: \[ I = 2 \int \cot^2(\theta) \cdot \frac{1}{\sqrt{1 + \sin^2(\theta)}} \, d\theta \] This integral can be solved using standard integral formulas. ### Step 7: Back Substitution After finding the integral in terms of \( \theta \), we substitute back to \( t \) and then back to \( x \) using \( t = e^x \). ### Final Result The final result will be expressed in terms of \( x \).
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int sqrt(e^(x)-1)dx

int sqrt(e^(x)+1) dx

int sqrt((e^(3x)-e^(2x))/(e^(x)+1))dx

int(e^(x)-1)/(e^(x)+1)dx

int(e^(x)-1)/(e^(x)+1)dx

int(e^(x)-1)/(e^(x)+1)dx

int (e^x+1)/(e^x-1)dx=

int (e ^ (2x) -1) / (e ^ (2x) +1) dx

Evaluate: int(e^x-1)/(e^x+1)dx