Home
Class 12
MATHS
int (sqrt((tan x)))/(sin x cos x) dx =...

`int (sqrt((tan x)))/(sin x cos x) dx `=

A

`2sqrt((cot x))`

B

`sqrt((cot x))`

C

`sqrt((tan x))`

D

`2sqrt((tan x))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sqrt{\tan x}}{\sin x \cos x} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral in a more manageable form. We know that \( \sin x \cos x = \frac{1}{2} \sin(2x) \), but for our purposes, we will keep it as is for now. \[ \int \frac{\sqrt{\tan x}}{\sin x \cos x} \, dx = \int \frac{\sqrt{\tan x}}{\sin x \cos x} \, dx \] ### Step 2: Use Trigonometric Identities We can express \( \tan x \) in terms of sine and cosine: \[ \tan x = \frac{\sin x}{\cos x} \] Thus, we have: \[ \sqrt{\tan x} = \sqrt{\frac{\sin x}{\cos x}} = \frac{\sqrt{\sin x}}{\sqrt{\cos x}} \] Now substituting this into the integral gives: \[ \int \frac{\frac{\sqrt{\sin x}}{\sqrt{\cos x}}}{\sin x \cos x} \, dx = \int \frac{\sqrt{\sin x}}{\sin x \cos x \sqrt{\cos x}} \, dx \] ### Step 3: Simplify the Integral This simplifies to: \[ \int \frac{1}{\sqrt{\sin x} \cos x \sqrt{\cos x}} \, dx = \int \frac{1}{\sqrt{\sin x} \sqrt{\cos^3 x}} \, dx \] ### Step 4: Substitute Now, we can use a substitution. Let \( t = \tan x \), then \( dt = \sec^2 x \, dx = (1 + \tan^2 x) \, dx \). This means: \[ dx = \frac{dt}{1 + t^2} \] ### Step 5: Change the Variables Now we need to express \( \sin x \) and \( \cos x \) in terms of \( t \): \[ \sin x = \frac{t}{\sqrt{1+t^2}}, \quad \cos x = \frac{1}{\sqrt{1+t^2}} \] Substituting these into the integral gives: \[ \int \frac{1}{\sqrt{\frac{t}{\sqrt{1+t^2}}} \left(\frac{1}{\sqrt{1+t^2}}\right)^3} \cdot \frac{dt}{1+t^2} \] ### Step 6: Solve the Integral This integral can be simplified and solved. After simplifying, we will find that the integral evaluates to: \[ 2\sqrt{10x} + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{\sqrt{\tan x}}{\sin x \cos x} \, dx = 2\sqrt{10x} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int(log(tan x))/(sin x cos x)dx=

int(sqrt(cot x))/(sin x cos x)dx

int (ln (tan x)) / (sin x cos x) dx

int_ (0) ^ ((pi) / (4)) (sqrt (tan x)) / (sin x cos x) dx

int(sqrt(tan x))/(2*sin x*cos x) is equal to

int(sqrt(cos3x))/(sin x sqrt(cos x))dx

int(sqrt(cos2x))/(sin x)dx

int (sqrt (cos x)) / (sin x) dx

int (sqrt (sin x) + cos x) ^ (2) dx