Home
Class 12
MATHS
int0^(pi//4) (sqrt(tan x))/(sin x cos x)...

`int_0^(pi//4) (sqrt(tan x))/(sin x cos x) dx` equals

A

`1`

B

`2`

C

`0`

D

`4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_0^{\frac{\pi}{4}} \frac{\sqrt{\tan x}}{\sin x \cos x} \, dx, \] we can start by rewriting the integrand. ### Step 1: Rewrite the integrand We know that \(\tan x = \frac{\sin x}{\cos x}\), so we can express \(\sqrt{\tan x}\) as \(\frac{\sqrt{\sin x}}{\sqrt{\cos x}}\). Thus, we can rewrite the integral as: \[ I = \int_0^{\frac{\pi}{4}} \frac{\sqrt{\tan x}}{\sin x \cos x} \, dx = \int_0^{\frac{\pi}{4}} \frac{\sqrt{\sin x}}{\sqrt{\cos x} \sin x \cos x} \, dx = \int_0^{\frac{\pi}{4}} \frac{\sqrt{\sin x}}{\sin x \cos^2 x} \, dx. \] ### Step 2: Simplify the integrand Now, we can simplify the integrand further: \[ I = \int_0^{\frac{\pi}{4}} \frac{1}{\cos^2 x} \cdot \frac{1}{\sqrt{\cos x}} \, dx = \int_0^{\frac{\pi}{4}} \sec^2 x \cdot \frac{1}{\sqrt{\cos x}} \, dx. \] ### Step 3: Use substitution Next, we can use the substitution \(t = \tan x\). Then, \(dt = \sec^2 x \, dx\), and we need to change the limits of integration: - When \(x = 0\), \(t = \tan(0) = 0\). - When \(x = \frac{\pi}{4}\), \(t = \tan\left(\frac{\pi}{4}\right) = 1\). Thus, the integral becomes: \[ I = \int_0^1 \frac{1}{\sqrt{1 + t^2}} \, dt. \] ### Step 4: Evaluate the integral The integral \(\int \frac{1}{\sqrt{1 + t^2}} \, dt\) is known to be \(\sinh^{-1}(t)\) or \(\ln(t + \sqrt{1 + t^2})\). Therefore, we can evaluate: \[ I = \left[ \ln(t + \sqrt{1 + t^2}) \right]_0^1. \] Calculating the limits: - At \(t = 1\): \[ \ln(1 + \sqrt{1 + 1^2}) = \ln(1 + \sqrt{2}). \] - At \(t = 0\): \[ \ln(0 + \sqrt{1 + 0^2}) = \ln(1) = 0. \] Thus, we have: \[ I = \ln(1 + \sqrt{2}) - 0 = \ln(1 + \sqrt{2}). \] ### Final Result Therefore, the value of the integral is: \[ I = \ln(1 + \sqrt{2}). \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int (sqrt (tan x)) / (sin x cos x) dx

int (sqrt (tan x)) / (sin x cos x) * dx

int(sqrt(tan x))/(2*sin x*cos x) is equal to

int_0^(pi//2) x(sqrt(tan x)+sqrt(cot x))dx equals

Evaluate: int(sqrt(tan x))/(sin x cos x)dx

Evaluate: int(sqrt(tan x))/(sin x cos x)dx

Evaluate int(sqrt(tan x))/(sin x cos x)dx

If int_(0)^((pi)/(2))(dx)/(1+sin x+cos x)=In2, then the value of int_(0)^((pi)/(2))(sin x)/(1+sin x+cos x)dx is equal to: