Home
Class 12
MATHS
int(x^6 (x +1))/(sqrt((5x^10) + 6x^9 + x...

`int(x^6 (x +1))/(sqrt((5x^10) + 6x^9 + x^4)) dx` =

A

`(sqrt((5x^6 + 6x^5 + 1)))/(15)`

B

`(sqrt((5x^8 + 6x^7 + x^2)))/(30)`

C

`(sqrt((5x^8 + 6x^7 + x^2)))/(15)`

D

`sqrt((5x^10 + 6x^5 + x^4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{x^6 (x + 1)}{\sqrt{5x^{10} + 6x^9 + x^4}} \, dx, \] we will follow these steps: ### Step 1: Simplify the Denominator First, we notice that we can factor out \(x^4\) from the denominator: \[ \sqrt{5x^{10} + 6x^9 + x^4} = \sqrt{x^4(5x^6 + 6x^5 + 1)} = x^2 \sqrt{5x^6 + 6x^5 + 1}. \] ### Step 2: Rewrite the Integral Now, substituting this back into the integral, we have: \[ \int \frac{x^6 (x + 1)}{x^2 \sqrt{5x^6 + 6x^5 + 1}} \, dx = \int \frac{x^4 (x + 1)}{\sqrt{5x^6 + 6x^5 + 1}} \, dx. \] ### Step 3: Substitute for Simplification Let us set \[ t = 5x^6 + 6x^5 + 1. \] Now, we need to find \(dt\): \[ dt = (30x^5 + 30x^4) \, dx = 30x^4 (x + 1) \, dx. \] Thus, we can express \(dx\) as: \[ dx = \frac{dt}{30x^4 (x + 1)}. \] ### Step 4: Substitute in the Integral Substituting \(t\) and \(dx\) into the integral, we get: \[ \int \frac{x^4 (x + 1)}{\sqrt{t}} \cdot \frac{dt}{30x^4 (x + 1)} = \int \frac{1}{30 \sqrt{t}} \, dt. \] ### Step 5: Integrate Now, we can integrate: \[ \int \frac{1}{30 \sqrt{t}} \, dt = \frac{1}{30} \cdot 2\sqrt{t} = \frac{2}{30} \sqrt{t} = \frac{1}{15} \sqrt{t} + C. \] ### Step 6: Substitute Back for \(t\) Finally, we substitute back \(t = 5x^6 + 6x^5 + 1\): \[ \frac{1}{15} \sqrt{5x^6 + 6x^5 + 1} + C. \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{x^6 (x + 1)}{\sqrt{5x^{10} + 6x^9 + x^4}} \, dx = \frac{1}{15} \sqrt{5x^6 + 6x^5 + 1} + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int(x^(6)(x+1)dx)/(sqrt(5x^(10)+6x^(5)+1))=

int(x^5dx)/( sqrt(x^(6)-1))

int(6x-5)/(sqrt(3x^(2)-5x+1))dx

int(3x^(2))/(sqrt(9-16x^(6)))dx

int(x+2)/(sqrt(x^(2)+5x+6))dx

int(dx)/(sqrt(x^(2)-6x+10))

int (dx)/(sqrt(x^(2)+6x+5))=?

I= int - (dx)/( sqrt( x^(2) + 6x + 1) )

int(x)/(sqrt(9-x^(4)))dx

int x^2/(9-x^6) dx=