Home
Class 12
MATHS
int0^(pi//4)sec^2 x sin x dx = int0^a (d...

`int_0^(pi//4)sec^2 x sin x dx = int_0^a (dx)/(sqrt(x) + sqrt(x + a))` then `alpha ` =

A

`9//16`

B

`25//16`

C

`9//25`

D

`16/25`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \int_0^{\frac{\pi}{4}} \sec^2 x \sin x \, dx = \int_0^a \frac{dx}{\sqrt{x} + \sqrt{x + a}}, \] we will evaluate both sides step by step. ### Step 1: Evaluate the Left-Hand Side (LHS) The LHS is given by: \[ \int_0^{\frac{\pi}{4}} \sec^2 x \sin x \, dx. \] We can rewrite \(\sec^2 x\) as \(\frac{1}{\cos^2 x}\) and \(\sin x\) remains as it is: \[ \int_0^{\frac{\pi}{4}} \sec^2 x \sin x \, dx = \int_0^{\frac{\pi}{4}} \frac{\sin x}{\cos^2 x} \, dx. \] Using the identity \(\tan x = \frac{\sin x}{\cos x}\), we can express this integral as: \[ \int_0^{\frac{\pi}{4}} \tan x \sec x \, dx. \] ### Step 2: Integrate the LHS The integral of \(\tan x \sec x\) is \(\sec x\): \[ \int \tan x \sec x \, dx = \sec x + C. \] Now we evaluate it from \(0\) to \(\frac{\pi}{4}\): \[ \left[ \sec x \right]_0^{\frac{\pi}{4}} = \sec\left(\frac{\pi}{4}\right) - \sec(0). \] Calculating the values: \[ \sec\left(\frac{\pi}{4}\right) = \sqrt{2}, \quad \sec(0) = 1. \] Thus, the LHS becomes: \[ \sqrt{2} - 1. \] ### Step 3: Evaluate the Right-Hand Side (RHS) The RHS is given by: \[ \int_0^a \frac{dx}{\sqrt{x} + \sqrt{x + a}}. \] To simplify this integral, we rationalize the denominator: \[ \frac{1}{\sqrt{x} + \sqrt{x + a}} \cdot \frac{\sqrt{x + a} - \sqrt{x}}{\sqrt{x + a} - \sqrt{x}} = \frac{\sqrt{x + a} - \sqrt{x}}{(x + a) - x} = \frac{\sqrt{x + a} - \sqrt{x}}{a}. \] Thus, we have: \[ \int_0^a \frac{dx}{\sqrt{x} + \sqrt{x + a}} = \frac{1}{a} \int_0^a (\sqrt{x + a} - \sqrt{x}) \, dx. \] ### Step 4: Evaluate the Integral Now we evaluate: \[ \int_0^a \sqrt{x + a} \, dx - \int_0^a \sqrt{x} \, dx. \] 1. For \(\int_0^a \sqrt{x + a} \, dx\): Using the substitution \(u = x + a\), \(du = dx\): \[ \int_0^a \sqrt{x + a} \, dx = \int_a^{2a} \sqrt{u} \, du = \left[\frac{2}{3} u^{3/2}\right]_a^{2a} = \frac{2}{3} \left((2a)^{3/2} - a^{3/2}\right). \] 2. For \(\int_0^a \sqrt{x} \, dx\): \[ \int_0^a \sqrt{x} \, dx = \left[\frac{2}{3} x^{3/2}\right]_0^a = \frac{2}{3} a^{3/2}. \] ### Step 5: Combine the Results Combining both integrals: \[ \int_0^a \sqrt{x + a} \, dx - \int_0^a \sqrt{x} \, dx = \frac{2}{3} \left( (2a)^{3/2} - a^{3/2} \right) - \frac{2}{3} a^{3/2} = \frac{2}{3} \left( 2^{3/2} a^{3/2} - 2a^{3/2} \right) = \frac{2}{3} (2\sqrt{2} - 2) a^{3/2}. \] Thus, we have: \[ \int_0^a \frac{dx}{\sqrt{x} + \sqrt{x + a}} = \frac{1}{a} \cdot \frac{2}{3} (2\sqrt{2} - 2) a^{3/2} = \frac{2}{3} (2\sqrt{2} - 2) \sqrt{a}. \] ### Step 6: Equate LHS and RHS Now we equate the LHS and RHS: \[ \sqrt{2} - 1 = \frac{2}{3} (2\sqrt{2} - 2) \sqrt{a}. \] ### Step 7: Solve for \(a\) To find \(a\), we rearrange: \[ \sqrt{a} = \frac{3(\sqrt{2} - 1)}{2(2\sqrt{2} - 2)} = \frac{3(\sqrt{2} - 1)}{4(\sqrt{2} - 1)} = \frac{3}{4}. \] Squaring both sides gives: \[ a = \left(\frac{3}{4}\right)^2 = \frac{9}{16}. \] ### Final Answer Thus, the value of \(a\) is: \[ \alpha = \frac{9}{16}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int_0^(pi/2) sin x sin 2x dx

int_(0)^(pi//4)x sec^(2)x " " dx =

int_0^(pi/2) sin x dx

Find int_0^1dx/(sqrt(x+1)+sqrt(x))

int_(0)^(4)(dx)/(x+sqrt(x))

int_0^a x/sqrt(a^2-x^2) dx

int_0^a x/sqrt(a^2+x^2)dx

int_(0)^(4)x sqrt(x) dx=

int_(0)^(pi//6) sqrt(1-sin 2x) dx

int_(0)^( pi/2)sqrt(1-sin x)dx