Home
Class 12
MATHS
int 1/(sqrt(sin^3 x cos x)) dx is equal ...

`int 1/(sqrt(sin^3 x cos x)) dx` is equal to

A

`(-2)/(sqrt((tan x))) + c`

B

`2sqrt(tan x) + c`

C

`2/(sqrt((tan x))) + c`

D

`-2 sqrt(tan x) + c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{\sqrt{\sin^3 x \cos x}} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \frac{1}{\sqrt{\sin^3 x \cos x}} \, dx \] To simplify this, we multiply the numerator and denominator by \( \sec^2 x \): \[ \int \frac{\sec^2 x}{\sqrt{\sin^3 x \cos x} \cdot \sec^2 x} \, dx \] This gives us: \[ \int \frac{\sec^2 x}{\sqrt{\sin^3 x} \cdot \sqrt{\cos^3 x}} \, dx \] ### Step 2: Simplify the Denominator The denominator can be rewritten as: \[ \sqrt{\sin^3 x \cos x} = \sqrt{\sin^3 x} \cdot \sqrt{\cos x} \] Thus, we have: \[ \int \frac{\sec^2 x}{\sqrt{\sin^3 x} \cdot \sqrt{\cos x}} \, dx \] Now, we can express \( \sec^2 x \) as \( \frac{1}{\cos^2 x} \): \[ \int \frac{1}{\cos^2 x \cdot \sqrt{\sin^3 x \cos x}} \, dx \] ### Step 3: Substitute \( \tan x \) Let \( T = \tan x \). Then, \( dx = \frac{1}{\sec^2 x} \, dT \) or \( dx = \frac{1}{1 + T^2} \, dT \). Also, we have: \[ \sin x = \frac{T}{\sqrt{1 + T^2}}, \quad \cos x = \frac{1}{\sqrt{1 + T^2}} \] Thus, \( \sin^3 x = \left(\frac{T}{\sqrt{1 + T^2}}\right)^3 = \frac{T^3}{(1 + T^2)^{3/2}} \) and \( \cos x = \frac{1}{\sqrt{1 + T^2}} \). ### Step 4: Substitute into the Integral Now substituting these into the integral: \[ \int \frac{1}{\sqrt{\frac{T^3}{(1 + T^2)^{3/2}} \cdot \frac{1}{\sqrt{1 + T^2}}}} \cdot \frac{1}{1 + T^2} \, dT \] This simplifies to: \[ \int \frac{(1 + T^2)^{2}}{\sqrt{T^3}} \cdot \frac{1}{1 + T^2} \, dT \] This reduces to: \[ \int \frac{(1 + T^2)^{3/2}}{T^{3/2}} \, dT \] ### Step 5: Integrate Now we can integrate: \[ \int T^{-3/2} (1 + T^2)^{3/2} \, dT \] Using the integration formula: \[ \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \] we can solve this integral. ### Step 6: Back Substitute After integrating, we substitute back \( T = \tan x \): \[ \text{Final Result} = -\frac{2}{\sqrt{\tan x}} + C \] ### Final Answer Thus, the integral evaluates to: \[ -\frac{2}{\sqrt{\tan x}} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int(1)/(sin x sqrt(sin x cos x))dx

int sin^(3)x cos^(3)x dx is equal to

int(1)/(sin x sqrt(sin x cos x))dx=

int(1)/(sin x sqrt(sin x cos x))dx=

int 1/(sin^2x cos^2x )dx is equal to:

int(x^((sin x)-1)*sin x+x^(sin x)log x^(cos x))dx is equal to

int(1)/(sqrt(cos^(3)x cos(x+a)))dx