Home
Class 12
MATHS
The equation of a curve is y = f(x). The...

The equation of a curve is `y = f(x)`. The tangents at `(1, f(1)), (2,f(2))` and `(3,f(3))` make angle `30^@, 60^@ and 45^@` respectively with +ive direction of x-axis then the value of
`int_2^3 f'(x) f''(x) dx + int_1^3 f'' (x)dx` is :

A

`sqrt(3)`

B

`1/(sqrt3)`

C

`-sqrt(3)`

D

`- 1/(sqrt3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ \int_2^3 f'(x) f''(x) \, dx + \int_1^3 f''(x) \, dx \] ### Step 1: Determine the slopes of the tangents We know that the slopes of the tangents at the points (1, f(1)), (2, f(2)), and (3, f(3)) are given by the angles they make with the positive x-axis. - For the point (1, f(1)), the angle is \(30^\circ\): \[ f'(1) = \tan(30^\circ) = \frac{1}{\sqrt{3}} \] - For the point (2, f(2)), the angle is \(60^\circ\): \[ f'(2) = \tan(60^\circ) = \sqrt{3} \] - For the point (3, f(3)), the angle is \(45^\circ\): \[ f'(3) = \tan(45^\circ) = 1 \] ### Step 2: Evaluate the first integral We can use the substitution \(t = f'(x)\), which gives us \(dt = f''(x) \, dx\). Thus, we can rewrite the first integral: \[ \int_2^3 f'(x) f''(x) \, dx = \int_2^3 t \, dt \] The limits of integration will remain the same, and we can evaluate the integral: \[ \int t \, dt = \frac{t^2}{2} \] Now, we need to evaluate this from \(x = 2\) to \(x = 3\): \[ \left[ \frac{f'(x)^2}{2} \right]_2^3 = \frac{f'(3)^2}{2} - \frac{f'(2)^2}{2} \] Substituting the values we found earlier: \[ = \frac{1^2}{2} - \frac{(\sqrt{3})^2}{2} = \frac{1}{2} - \frac{3}{2} = -1 \] ### Step 3: Evaluate the second integral The second integral is straightforward: \[ \int_1^3 f''(x) \, dx = [f'(x)]_1^3 = f'(3) - f'(1) \] Substituting the values: \[ = 1 - \frac{1}{\sqrt{3}} \] ### Step 4: Combine the results Now we can combine both parts: \[ \int_2^3 f'(x) f''(x) \, dx + \int_1^3 f''(x) \, dx = -1 + \left(1 - \frac{1}{\sqrt{3}}\right) \] Simplifying this: \[ = -1 + 1 - \frac{1}{\sqrt{3}} = -\frac{1}{\sqrt{3}} \] ### Final Answer Thus, the value of the expression is: \[ -\frac{1}{\sqrt{3}} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

The equation of the curve is y=f(x)dot The tangents at [1,f(1),[2,f(2)],a n d[3,f(3)] make angles pi/6,pi/3,a n dpi/4, respectively, with the positive direction of x-axis. Then the value of int_2^3f^(prime)(x)f^(x)dx+int_1^3f^(x)dx is equal to (a)-1/(sqrt(3)) (b) 1/(sqrt(3)) (c) 0 (d) none of these

The value of int_(2)^(3)f(5-x)dx-int_(2)^(3)f(x)dx is

int3^x(f(x)log3+f'(x))dx=

Let f(x)=e^(x)+2x+1 then find the value of int_(2)^(e+3)f^(-1)(x)dx

If f(x)=x^(3)+3x+4, then the value of int_(-1)^(1)f(x)dx+int_(0)^(4)f^(-1)(x)dx equals

if f(x)=|x-1| then int_(0)^(2)f(x)dx is

int_(2)^(3)f(5-x)dx-int_(2)^(3)f(x)dx=

f(0)=1 , f(2)=e^2 , f'(x)=f'(2-x) , then find the value of int_0^(2)f(x)dx