Home
Class 12
MATHS
int tan^3 2x sec 2x dx =...

`int tan^3 2x sec 2x dx `=

A

`sec^3 2x + 3 sec 2x`

B

`1/6[ sec^3 2x - 3 sec 2x]`

C

`sec^3 2x - 3 sec 2x`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \tan^3(2x) \sec(2x) \, dx \), we will break it down step by step. ### Step 1: Rewrite the Integral We can rewrite \( \tan^3(2x) \) as \( \tan^2(2x) \tan(2x) \). This allows us to express \( \tan^2(2x) \) in terms of \( \sec(2x) \): \[ \tan^2(2x) = \sec^2(2x) - 1 \] Thus, we can rewrite the integral as: \[ \int \tan^3(2x) \sec(2x) \, dx = \int \tan^2(2x) \tan(2x) \sec(2x) \, dx = \int (\sec^2(2x) - 1) \tan(2x) \sec(2x) \, dx \] ### Step 2: Distribute the Integral Now we can distribute the integral: \[ \int (\sec^2(2x) - 1) \tan(2x) \sec(2x) \, dx = \int \sec^3(2x) \tan(2x) \, dx - \int \tan(2x) \sec(2x) \, dx \] ### Step 3: Use Substitution For the first integral \( \int \sec^3(2x) \tan(2x) \, dx \), we will use the substitution: \[ t = \sec(2x) \quad \text{then} \quad dt = 2\sec(2x)\tan(2x) \, dx \quad \Rightarrow \quad dx = \frac{dt}{2\sec(2x)\tan(2x)} \] Thus, we can rewrite the integral: \[ \int \sec^3(2x) \tan(2x) \, dx = \int t^3 \cdot \frac{dt}{2t \tan(2x)} = \frac{1}{2} \int t^2 \, dt \] ### Step 4: Integrate Now we can integrate: \[ \frac{1}{2} \int t^2 \, dt = \frac{1}{2} \cdot \frac{t^3}{3} = \frac{1}{6} t^3 = \frac{1}{6} \sec^3(2x) \] ### Step 5: Solve the Second Integral Now we solve the second integral: \[ -\int \tan(2x) \sec(2x) \, dx \] Using the same substitution \( t = \sec(2x) \): \[ -\int \tan(2x) \sec(2x) \, dx = -\frac{1}{2} \int dt = -\frac{1}{2} t = -\frac{1}{2} \sec(2x) \] ### Step 6: Combine Results Combining both results, we have: \[ \int \tan^3(2x) \sec(2x) \, dx = \frac{1}{6} \sec^3(2x) - \frac{1}{2} \sec(2x) + C \] ### Final Answer Thus, the final answer is: \[ \int \tan^3(2x) \sec(2x) \, dx = \frac{1}{6} \sec^3(2x) - \frac{1}{2} \sec(2x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

Evaluate: (i) int(sec^(2)sqrt(x))/(sqrt(x))dx (ii) int tan^(3)2x sec2xdx

Evaluate (i) int tan^(3/2)x sec^(2)xdx (ii) int(x^(3))/((x^(2)+1)^(3))dx

What is int tan^(2) x sec^(4) x dx equal to ?

Evaluate: (i) int tan^(3)x sec^(2)xdx( ii) int((log x)^(3))/(x)dx

Find int tan^nx sec^2x\ dx, (n!=-1)

int_(-pi)^(pi) tan x sec^(2) x dx = _________.

Evaluate: (i) int tan^(3)x sec^(2)xdx (ii) int tan x sec^(4)xdx

int e^(tan x) (sec^(2) x + sec^(3) x sin x ) dx is equal to

int(tan^(2)x)/(sec x-1)dx

(i) int tan^2 (2x-3) dx (ii) int sec^2 (7-4x) dx