Home
Class 12
MATHS
int cos^3 xe^("log" (sin x)) dx is equal...

`int cos^3 xe^("log" (sin x)) dx` is equal to

A

`- (sin^4 x)/(4) + c`

B

`- ("cos"^4 x)/(4) + c`

C

`(e^(sin x))/(4) +c `

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \cos^3 x \, e^{\log(\sin x)} \, dx \), we will follow these steps: ### Step 1: Simplify the integrand We know that \( e^{\log(a)} = a \). Therefore, we can simplify the integrand: \[ e^{\log(\sin x)} = \sin x \] Thus, the integral becomes: \[ \int \cos^3 x \sin x \, dx \] ### Step 2: Use substitution Let us use the substitution: \[ t = \cos x \] Then, the derivative of \( t \) with respect to \( x \) is: \[ dt = -\sin x \, dx \quad \Rightarrow \quad \sin x \, dx = -dt \] Now, we can rewrite the integral in terms of \( t \): \[ \int \cos^3 x \sin x \, dx = \int t^3 (-dt) = -\int t^3 \, dt \] ### Step 3: Integrate Now we can integrate \( -\int t^3 \, dt \): \[ -\int t^3 \, dt = -\left(\frac{t^4}{4}\right) + C = -\frac{t^4}{4} + C \] ### Step 4: Substitute back Now we substitute back \( t = \cos x \): \[ -\frac{t^4}{4} + C = -\frac{\cos^4 x}{4} + C \] ### Final Answer Thus, the final answer is: \[ \int \cos^3 x \, e^{\log(\sin x)} \, dx = -\frac{\cos^4 x}{4} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int cos^(3)x.e^(log(sin x)) dx is equal to

intcos^(3)xe^(log(sinx))dx is equal to

The value of int(xe^(ln(sin x))-cos x)dx is equal to

int_(t_(0))^(pi)(x^(sin x)((cos x log x)+(sin x)/(x))dx is equal

Evaluate: int cos^(3)xe^(log sin x)dx

int cos(log x)dx is equal to

int cos (log_e x)dx is equal to

int(x^((sin x)-1)*sin x+x^(sin x)log x^(cos x))dx is equal to