Home
Class 12
MATHS
The value of the integral int2^4 sqrt(x^...

The value of the integral `int_2^4 sqrt(x^2 - 4)/(x^4) dx` is

A

`sqrt(3/32)`

B

`(sqrt(3))/(32)`

C

`(32)/(sqrt3)`

D

`- (sqrt3)/(32)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int_2^4 \frac{\sqrt{x^2 - 4}}{x^4} \, dx\), we will follow these steps: ### Step 1: Simplify the integrand We start with the integral: \[ \int_2^4 \frac{\sqrt{x^2 - 4}}{x^4} \, dx \] We can rewrite the integrand by factoring out \(x^2\) from the square root: \[ \sqrt{x^2 - 4} = \sqrt{x^2(1 - \frac{4}{x^2})} = x \sqrt{1 - \frac{4}{x^2}} \] Thus, the integral becomes: \[ \int_2^4 \frac{x \sqrt{1 - \frac{4}{x^2}}}{x^4} \, dx = \int_2^4 \frac{\sqrt{1 - \frac{4}{x^2}}}{x^3} \, dx \] ### Step 2: Substitution Next, we will use the substitution \(t = 1 - \frac{4}{x^2}\). To find \(dt\), we differentiate: \[ dt = \frac{d}{dx}(1 - \frac{4}{x^2}) = \frac{8}{x^3} \, dx \implies dx = \frac{x^3}{8} \, dt \] Now, we need to express \(x\) in terms of \(t\): \[ t = 1 - \frac{4}{x^2} \implies \frac{4}{x^2} = 1 - t \implies x^2 = \frac{4}{1 - t} \implies x = \frac{2}{\sqrt{1 - t}} \] ### Step 3: Change the limits of integration When \(x = 2\): \[ t = 1 - \frac{4}{2^2} = 1 - 1 = 0 \] When \(x = 4\): \[ t = 1 - \frac{4}{4^2} = 1 - \frac{4}{16} = 1 - \frac{1}{4} = \frac{3}{4} \] Thus, the limits change from \(x = 2\) to \(x = 4\) into \(t = 0\) to \(t = \frac{3}{4}\). ### Step 4: Substitute into the integral Now substituting everything back into the integral: \[ \int_0^{\frac{3}{4}} \sqrt{t} \cdot \frac{2}{\sqrt{1 - t}} \cdot \frac{2}{8} \, dt = \frac{1}{2} \int_0^{\frac{3}{4}} \frac{2\sqrt{t}}{\sqrt{1 - t}} \, dt \] ### Step 5: Solve the integral The integral \(\int \frac{\sqrt{t}}{\sqrt{1 - t}} \, dt\) can be solved using the beta function or trigonometric substitution. However, we can also use the formula for the integral of the form: \[ \int_0^a t^{m-1} (1-t)^{n-1} \, dt = \frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)} \] For our case, we have \(m = \frac{3}{2}\) and \(n = \frac{1}{2}\): \[ \int_0^{\frac{3}{4}} t^{\frac{1}{2}} (1 - t)^{-\frac{1}{2}} \, dt = B\left(\frac{3}{4}, \frac{1}{2}\right) \] ### Step 6: Evaluate the final result Evaluating this integral gives us: \[ \frac{1}{2} \cdot \frac{2\sqrt{3}}{3} = \frac{\sqrt{3}}{3} \] Finally, we multiply by the constant factor we factored out earlier, leading to: \[ \text{Final result} = \frac{32\sqrt{3}}{3} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(4)(x^(2))/(x^(2)-4x+8)dx is equal to

The value of the integral int_(1)^(sqrt(2) +1) ((x^2 -1)/(x^2+1)) (1)/(sqrt(1 +x^4)) dx is

The value of integral int_(-2)^(4) x[x]dx is

The value of the integral int_(0)^(pi//4) sin^(-4)x dx , is

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is

The value of integral int_(2)^(4)(dx)/(x) is :-

int_(2)^(4)(sqrt(x^(2)-4))/(4)dx is equal to

If the value of the integral int_(1)^(2)e^(x^(2))dx is alpha, then the value of int_(e)^(e^(4))sqrt(ln x)dx is:

The value of the integral int_(-4)^(4)(x^(3)-6x^(2)+12x-8)dx is