Home
Class 12
MATHS
int0^(oo) (dx)/([x + sqrt((x^2 + 1))]^3)...

`int_0^(oo) (dx)/([x + sqrt((x^2 + 1))]^3)` =

A

`3//8`

B

`1//8`

C

`-3//8`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_0^{\infty} \frac{dx}{(x + \sqrt{x^2 + 1})^3} \] we will use the substitution \( x = \tan \theta \). ### Step 1: Change of Variables Using the substitution \( x = \tan \theta \), we have: \[ dx = \sec^2 \theta \, d\theta \] ### Step 2: Change the Limits of Integration When \( x = 0 \), \( \theta = 0 \) and when \( x \to \infty \), \( \theta \to \frac{\pi}{2} \). Thus, the limits change from \( 0 \) to \( \frac{\pi}{2} \). ### Step 3: Rewrite the Integral Now substituting into the integral, we get: \[ I = \int_0^{\frac{\pi}{2}} \frac{\sec^2 \theta \, d\theta}{\left(\tan \theta + \sqrt{\tan^2 \theta + 1}\right)^3} \] ### Step 4: Simplify the Denominator We know that \( \sqrt{\tan^2 \theta + 1} = \sec \theta \). Therefore, we can rewrite the denominator: \[ \tan \theta + \sqrt{\tan^2 \theta + 1} = \tan \theta + \sec \theta \] Thus, we have: \[ I = \int_0^{\frac{\pi}{2}} \frac{\sec^2 \theta \, d\theta}{(\tan \theta + \sec \theta)^3} \] ### Step 5: Further Simplification Now we express \( \tan \theta \) in terms of sine and cosine: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} \] So, \[ \tan \theta + \sec \theta = \frac{\sin \theta}{\cos \theta} + \frac{1}{\cos \theta} = \frac{\sin \theta + 1}{\cos \theta} \] Thus, we can rewrite the integral as: \[ I = \int_0^{\frac{\pi}{2}} \frac{\sec^2 \theta \, d\theta}{\left(\frac{\sin \theta + 1}{\cos \theta}\right)^3} = \int_0^{\frac{\pi}{2}} \frac{\sec^2 \theta \cos^3 \theta \, d\theta}{(\sin \theta + 1)^3} \] ### Step 6: Simplifying the Integral Since \( \sec^2 \theta = \frac{1}{\cos^2 \theta} \), we can simplify: \[ I = \int_0^{\frac{\pi}{2}} \frac{\cos^3 \theta}{(\sin \theta + 1)^3} \, d\theta \] ### Step 7: Substitution for the Integral Now, let \( t = 1 + \sin \theta \), then \( d\theta = \frac{dt}{\cos \theta} \) and when \( \theta = 0 \), \( t = 1 \) and when \( \theta = \frac{\pi}{2} \), \( t = 2 \). ### Step 8: Final Integral The integral becomes: \[ I = \int_1^2 \frac{\cos^3 \theta}{t^3} \cdot \frac{dt}{\cos \theta} \] This simplifies to: \[ I = \int_1^2 \frac{\cos^2 \theta}{t^3} \, dt \] ### Step 9: Evaluating the Integral Now we can evaluate the integral: \[ I = \int_1^2 \frac{1}{t^3} \, dt = \left[-\frac{1}{2t^2}\right]_1^2 = -\frac{1}{8} + \frac{1}{2} = \frac{3}{8} \] ### Conclusion Thus, the value of the integral is: \[ I = \frac{3}{8} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(oo)(dx)/((1+x)sqrt(x))

int_(0)^(1)(dx)/((x+sqrt(x^(2)+1))^(3))=

int_(0)^(1)(dx)/(3sqrt(x))

If n>1, then int_(0)^(oo)(dx)/((x+sqrt(1+x^(2)))^(n)) equals

int_(0)^(oo)(1)/(x+a)dx

int_(0)^(oo)e^(-x/2)dx

int_(0)^(oo)e^(-x/2)dx

int_(0)^(oo)e^(-x/2)dx