Home
Class 12
MATHS
int|x|^3 dx is equal to...

`int|x|^3 dx` is equal to

A

`(x^4)/(4)`

B

`- (x^4)/(4)`

C

`(|x|^4)/(4)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int |x|^3 \, dx\), we need to consider the absolute value function, which behaves differently depending on whether \(x\) is positive or negative. ### Step-by-Step Solution: 1. **Break Down the Absolute Value**: The absolute value function \(|x|\) can be defined as: \[ |x| = \begin{cases} x & \text{if } x \geq 0 \\ -x & \text{if } x < 0 \end{cases} \] Therefore, \(|x|^3\) can be expressed as: \[ |x|^3 = \begin{cases} x^3 & \text{if } x \geq 0 \\ (-x)^3 = -x^3 & \text{if } x < 0 \end{cases} \] 2. **Set Up the Integral for Each Case**: We will evaluate the integral in two cases based on the definition of \(|x|^3\): - Case 1: \(x \geq 0\) \[ \int |x|^3 \, dx = \int x^3 \, dx \] - Case 2: \(x < 0\) \[ \int |x|^3 \, dx = \int -x^3 \, dx \] 3. **Integrate for Case 1** (\(x \geq 0\)): \[ \int x^3 \, dx = \frac{x^4}{4} + C_1 \] 4. **Integrate for Case 2** (\(x < 0\)): \[ \int -x^3 \, dx = -\left(\frac{x^4}{4}\right) + C_2 = -\frac{x^4}{4} + C_2 \] 5. **Combine the Results**: Now we can express the integral \(\int |x|^3 \, dx\) as: \[ \int |x|^3 \, dx = \begin{cases} \frac{x^4}{4} + C_1 & \text{if } x \geq 0 \\ -\frac{x^4}{4} + C_2 & \text{if } x < 0 \end{cases} \] 6. **Final Expression**: Since the constants of integration \(C_1\) and \(C_2\) can be combined into a single constant \(C\), we can write: \[ \int |x|^3 \, dx = \begin{cases} \frac{x^4}{4} + C & \text{if } x \geq 0 \\ -\frac{x^4}{4} + C & \text{if } x < 0 \end{cases} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int x^(3) dx is equal to :

int _(-1)^(2) |x|^(3) dx is equal to

int|x|dx is equal to

int_(-2)^(2)sin^(3)x|x|dx is equal to

int a^(x)dx is equal to

int x sinx sec^(3)x dx is equal to

int(1)/(xsqrt(1-x^(3))) dx is equal to

The value of int_(-1)^(3)(|x|+|x-1|) dx is equal to