Home
Class 12
MATHS
int sec^(2//3) x cosec^(4//3) x dx is eq...

`int sec^(2//3) x cosec^(4//3) x dx` is equal to

A

`3(tan x)^(1//3)`

B

`3(cot x)^(-1//3)`

C

`-3(tan x)^(-1//3)`

D

`-3(cot x)^(-1//3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sec^{\frac{2}{3}} x \csc^{\frac{4}{3}} x \, dx \), we can follow these steps: ### Step 1: Convert to Sine and Cosine We start by rewriting the integral in terms of sine and cosine: \[ \sec x = \frac{1}{\cos x} \quad \text{and} \quad \csc x = \frac{1}{\sin x} \] Thus, we can rewrite the integral as: \[ \int \sec^{\frac{2}{3}} x \csc^{\frac{4}{3}} x \, dx = \int \left(\frac{1}{\cos x}\right)^{\frac{2}{3}} \left(\frac{1}{\sin x}\right)^{\frac{4}{3}} \, dx = \int \frac{1}{\cos^{\frac{2}{3}} x \sin^{\frac{4}{3}} x} \, dx \] ### Step 2: Rewrite the Integral We can express the integral as: \[ \int \frac{\sin^{\frac{4}{3}} x}{\cos^{\frac{2}{3}} x} \, dx = \int \sec^{\frac{2}{3}} x \sin^{\frac{4}{3}} x \, dx \] This can be rewritten as: \[ \int \sec^{2} x \cdot \sec^{-\frac{4}{3}} x \sin^{\frac{4}{3}} x \, dx \] ### Step 3: Use Substitution Let us set \( t = \tan x \). Then, we have: \[ \frac{dt}{dx} = \sec^2 x \quad \Rightarrow \quad dx = \frac{dt}{\sec^2 x} \] Substituting this into the integral gives: \[ \int \sec^{-\frac{4}{3}} x \sin^{\frac{4}{3}} x \cdot \frac{dt}{\sec^2 x} \] This simplifies to: \[ \int t^{\frac{4}{3}} \cdot \sec^{-\frac{4}{3}} x \cdot \frac{dt}{\sec^2 x} \] ### Step 4: Solve the Integral Now, we can express the integral in terms of \( t \): \[ \int t^{\frac{4}{3}} \cdot t^{-\frac{4}{3}} \, dt = \int t^{-\frac{4}{3}} \, dt \] The integral of \( t^{-\frac{4}{3}} \) is given by: \[ \int t^{-\frac{4}{3}} \, dt = \frac{t^{-\frac{1}{3}}}{-\frac{1}{3}} = -3t^{-\frac{1}{3}} + C \] ### Step 5: Substitute Back Now, substituting back \( t = \tan x \): \[ -3 \tan^{-\frac{1}{3}} x + C \] This can be rewritten as: \[ -3 \cdot \frac{1}{\tan^{\frac{1}{3}} x} + C = -3 \cdot \cot^{\frac{1}{3}} x + C \] ### Final Answer Thus, the final result of the integral is: \[ -3 \cot^{\frac{1}{3}} x + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int sec^(2/3)x cosec^(4/3)xdx

The integral int_(pi//6)^(pi//3)sec^(2//3)x " cosec"^(4//3)x dx is equal to

int sec^(8//9)x cosec^(10//9)x dx is equal to

int"cosec"^(4)x dx is equal to

int x sinx sec^(3)x dx is equal to

int sec^(2) x cosec^(2) x dx

int (sec^(2) x)/(" cosec "^(2)x) dx

int e^(tan x) (sec^(2) x + sec^(3) x sin x ) dx is equal to

int " cosec"^(4) 2x dx

int cot^(3) x. cosec^(2) x dx