Home
Class 12
MATHS
int (log(x + 1) - log x)/(x(x + 1)) dx e...

`int (log(x + 1) - log x)/(x(x + 1)) dx` equals

A

`-log ((x + 1)/(x)) + c`

B

`- log[log ((x + 1)/(x))] + c`

C

`- 1/2[log ((x +1)/(x))]^2 + c`

D

`c - 1/2 [log (x + 1)^2 - (log x)^2]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\log(x + 1) - \log x}{x(x + 1)} \, dx \), we can follow these steps: ### Step 1: Simplify the integrand using logarithmic properties We can use the property of logarithms that states \( \log a - \log b = \log \left( \frac{a}{b} \right) \). Thus, we can rewrite the integrand: \[ \log(x + 1) - \log x = \log \left( \frac{x + 1}{x} \right) = \log \left( 1 + \frac{1}{x} \right) \] Now, the integral becomes: \[ \int \frac{\log \left( 1 + \frac{1}{x} \right)}{x(x + 1)} \, dx \] ### Step 2: Change of variables Let \( t = \log \left( 1 + \frac{1}{x} \right) \). To find \( dt \), we differentiate: \[ \frac{d}{dx} \left( \log \left( 1 + \frac{1}{x} \right) \right) = \frac{1}{1 + \frac{1}{x}} \cdot \left(-\frac{1}{x^2}\right) = -\frac{1}{x^2 + x} \] Thus, we have: \[ dt = -\frac{1}{x^2 + x} \, dx \quad \Rightarrow \quad dx = -(x^2 + x) \, dt \] ### Step 3: Substitute in the integral Substituting \( t \) and \( dx \) into the integral gives: \[ \int \frac{t}{x(x + 1)} \cdot -(x^2 + x) \, dt \] The \( x(x + 1) \) in the denominator cancels with the \( x^2 + x \) in the numerator, leading to: \[ -\int t \, dt \] ### Step 4: Integrate Now we can integrate: \[ -\int t \, dt = -\frac{t^2}{2} + C \] ### Step 5: Substitute back for \( t \) Recall that \( t = \log \left( 1 + \frac{1}{x} \right) \). Thus, substituting back gives: \[ -\frac{1}{2} \left( \log \left( 1 + \frac{1}{x} \right) \right)^2 + C \] ### Final Result The final answer for the integral is: \[ -\frac{1}{2} \log^2 \left( \frac{x + 1}{x} \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|6 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int(log(x+1)-log x)/(x(x+1))dx is equal to :

int x^(x) (1+ log x) dx

int x ln(x-1)dx

int(e^(x)(x log x+1))/(x)dx is equal to

The value of int x log x (log x - 1) dx is equal to

int(log(log x)+(log x)^(-1))dx=

The value of int(x^(x)(1+ln x))/((x^(x)+1))dx is equal to

int{((log x-1)/(1+(log x)^(2))}^(2)dx is equal to